ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdval Unicode version

Theorem swrdval 11101
Description: Value of a subword. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
swrdval  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( S substr  <. F ,  L >. )  =  if ( ( F..^ L ) 
C_  dom  S , 
( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) ) ,  (/) ) )
Distinct variable groups:    x, S    x, F    x, L    x, V

Proof of Theorem swrdval
Dummy variables  s  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-substr 11099 . . 3  |- substr  =  ( s  e.  _V , 
b  e.  ( ZZ 
X.  ZZ )  |->  if ( ( ( 1st `  b )..^ ( 2nd `  b ) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
x  +  ( 1st `  b ) ) ) ) ,  (/) ) )
21a1i 9 . 2  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  -> substr  =  ( s  e.  _V , 
b  e.  ( ZZ 
X.  ZZ )  |->  if ( ( ( 1st `  b )..^ ( 2nd `  b ) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
x  +  ( 1st `  b ) ) ) ) ,  (/) ) ) )
3 simprl 529 . . 3  |-  ( ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( s  =  S  /\  b  = 
<. F ,  L >. ) )  ->  s  =  S )
4 fveq2 5576 . . . . 5  |-  ( b  =  <. F ,  L >.  ->  ( 1st `  b
)  =  ( 1st `  <. F ,  L >. ) )
54adantl 277 . . . 4  |-  ( ( s  =  S  /\  b  =  <. F ,  L >. )  ->  ( 1st `  b )  =  ( 1st `  <. F ,  L >. )
)
6 op1stg 6236 . . . . 5  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( 1st `  <. F ,  L >. )  =  F )
763adant1 1018 . . . 4  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( 1st `  <. F ,  L >. )  =  F )
85, 7sylan9eqr 2260 . . 3  |-  ( ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( s  =  S  /\  b  = 
<. F ,  L >. ) )  ->  ( 1st `  b )  =  F )
9 fveq2 5576 . . . . 5  |-  ( b  =  <. F ,  L >.  ->  ( 2nd `  b
)  =  ( 2nd `  <. F ,  L >. ) )
109adantl 277 . . . 4  |-  ( ( s  =  S  /\  b  =  <. F ,  L >. )  ->  ( 2nd `  b )  =  ( 2nd `  <. F ,  L >. )
)
11 op2ndg 6237 . . . . 5  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( 2nd `  <. F ,  L >. )  =  L )
12113adant1 1018 . . . 4  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( 2nd `  <. F ,  L >. )  =  L )
1310, 12sylan9eqr 2260 . . 3  |-  ( ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( s  =  S  /\  b  = 
<. F ,  L >. ) )  ->  ( 2nd `  b )  =  L )
14 simp2 1001 . . . . . 6  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  ( 1st `  b )  =  F )
15 simp3 1002 . . . . . 6  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  ( 2nd `  b )  =  L )
1614, 15oveq12d 5962 . . . . 5  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  (
( 1st `  b
)..^ ( 2nd `  b
) )  =  ( F..^ L ) )
17 simp1 1000 . . . . . 6  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  s  =  S )
1817dmeqd 4880 . . . . 5  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  dom  s  =  dom  S )
1916, 18sseq12d 3224 . . . 4  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  (
( ( 1st `  b
)..^ ( 2nd `  b
) )  C_  dom  s 
<->  ( F..^ L ) 
C_  dom  S )
)
2015, 14oveq12d 5962 . . . . . 6  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  (
( 2nd `  b
)  -  ( 1st `  b ) )  =  ( L  -  F
) )
2120oveq2d 5960 . . . . 5  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  (
0..^ ( ( 2nd `  b )  -  ( 1st `  b ) ) )  =  ( 0..^ ( L  -  F
) ) )
2214oveq2d 5960 . . . . . 6  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  (
x  +  ( 1st `  b ) )  =  ( x  +  F
) )
2317, 22fveq12d 5583 . . . . 5  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  (
s `  ( x  +  ( 1st `  b
) ) )  =  ( S `  (
x  +  F ) ) )
2421, 23mpteq12dv 4126 . . . 4  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  (
x  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
x  +  ( 1st `  b ) ) ) )  =  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F
) ) ) )
2519, 24ifbieq1d 3593 . . 3  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  if ( ( ( 1st `  b )..^ ( 2nd `  b ) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
x  +  ( 1st `  b ) ) ) ) ,  (/) )  =  if ( ( F..^ L )  C_  dom  S ,  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( S `  (
x  +  F ) ) ) ,  (/) ) )
263, 8, 13, 25syl3anc 1250 . 2  |-  ( ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( s  =  S  /\  b  = 
<. F ,  L >. ) )  ->  if (
( ( 1st `  b
)..^ ( 2nd `  b
) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b )  -  ( 1st `  b
) ) )  |->  ( s `  ( x  +  ( 1st `  b
) ) ) ) ,  (/) )  =  if ( ( F..^ L
)  C_  dom  S , 
( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) ) ,  (/) ) )
27 elex 2783 . . 3  |-  ( S  e.  V  ->  S  e.  _V )
28273ad2ant1 1021 . 2  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  S  e.  _V )
29 opelxpi 4707 . . 3  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  -> 
<. F ,  L >.  e.  ( ZZ  X.  ZZ ) )
30293adant1 1018 . 2  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  <. F ,  L >.  e.  ( ZZ 
X.  ZZ ) )
31 0zd 9384 . . . . 5  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  0  e.  ZZ )
32 simp3 1002 . . . . . 6  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  L  e.  ZZ )
33 simp2 1001 . . . . . 6  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  F  e.  ZZ )
3432, 33zsubcld 9500 . . . . 5  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( L  -  F )  e.  ZZ )
35 fzofig 10577 . . . . 5  |-  ( ( 0  e.  ZZ  /\  ( L  -  F
)  e.  ZZ )  ->  ( 0..^ ( L  -  F ) )  e.  Fin )
3631, 34, 35syl2anc 411 . . . 4  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  (
0..^ ( L  -  F ) )  e. 
Fin )
3736mptexd 5811 . . 3  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( S `
 ( x  +  F ) ) )  e.  _V )
38 0ex 4171 . . . 4  |-  (/)  e.  _V
3938a1i 9 . . 3  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  (/)  e.  _V )
4037, 39ifexd 4531 . 2  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  if ( ( F..^ L
)  C_  dom  S , 
( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) ) ,  (/) )  e. 
_V )
412, 26, 28, 30, 40ovmpod 6073 1  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( S substr  <. F ,  L >. )  =  if ( ( F..^ L ) 
C_  dom  S , 
( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) ) ,  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   _Vcvv 2772    C_ wss 3166   (/)c0 3460   ifcif 3571   <.cop 3636    |-> cmpt 4105    X. cxp 4673   dom cdm 4675   ` cfv 5271  (class class class)co 5944    e. cmpo 5946   1stc1st 6224   2ndc2nd 6225   Fincfn 6827   0cc0 7925    + caddc 7928    - cmin 8243   ZZcz 9372  ..^cfzo 10264   substr csubstr 11098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-1o 6502  df-er 6620  df-en 6828  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-fzo 10265  df-substr 11099
This theorem is referenced by:  swrd00g  11102  swrdclg  11103  swrdval2  11104  swrdlend  11111  swrdnd  11112  swrd0g  11113
  Copyright terms: Public domain W3C validator