ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdval Unicode version

Theorem swrdval 11134
Description: Value of a subword. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
swrdval  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( S substr  <. F ,  L >. )  =  if ( ( F..^ L ) 
C_  dom  S , 
( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) ) ,  (/) ) )
Distinct variable groups:    x, S    x, F    x, L    x, V

Proof of Theorem swrdval
Dummy variables  s  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-substr 11132 . . 3  |- substr  =  ( s  e.  _V , 
b  e.  ( ZZ 
X.  ZZ )  |->  if ( ( ( 1st `  b )..^ ( 2nd `  b ) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
x  +  ( 1st `  b ) ) ) ) ,  (/) ) )
21a1i 9 . 2  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  -> substr  =  ( s  e.  _V , 
b  e.  ( ZZ 
X.  ZZ )  |->  if ( ( ( 1st `  b )..^ ( 2nd `  b ) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
x  +  ( 1st `  b ) ) ) ) ,  (/) ) ) )
3 simprl 529 . . 3  |-  ( ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( s  =  S  /\  b  = 
<. F ,  L >. ) )  ->  s  =  S )
4 fveq2 5594 . . . . 5  |-  ( b  =  <. F ,  L >.  ->  ( 1st `  b
)  =  ( 1st `  <. F ,  L >. ) )
54adantl 277 . . . 4  |-  ( ( s  =  S  /\  b  =  <. F ,  L >. )  ->  ( 1st `  b )  =  ( 1st `  <. F ,  L >. )
)
6 op1stg 6254 . . . . 5  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( 1st `  <. F ,  L >. )  =  F )
763adant1 1018 . . . 4  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( 1st `  <. F ,  L >. )  =  F )
85, 7sylan9eqr 2261 . . 3  |-  ( ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( s  =  S  /\  b  = 
<. F ,  L >. ) )  ->  ( 1st `  b )  =  F )
9 fveq2 5594 . . . . 5  |-  ( b  =  <. F ,  L >.  ->  ( 2nd `  b
)  =  ( 2nd `  <. F ,  L >. ) )
109adantl 277 . . . 4  |-  ( ( s  =  S  /\  b  =  <. F ,  L >. )  ->  ( 2nd `  b )  =  ( 2nd `  <. F ,  L >. )
)
11 op2ndg 6255 . . . . 5  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( 2nd `  <. F ,  L >. )  =  L )
12113adant1 1018 . . . 4  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( 2nd `  <. F ,  L >. )  =  L )
1310, 12sylan9eqr 2261 . . 3  |-  ( ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( s  =  S  /\  b  = 
<. F ,  L >. ) )  ->  ( 2nd `  b )  =  L )
14 simp2 1001 . . . . . 6  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  ( 1st `  b )  =  F )
15 simp3 1002 . . . . . 6  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  ( 2nd `  b )  =  L )
1614, 15oveq12d 5980 . . . . 5  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  (
( 1st `  b
)..^ ( 2nd `  b
) )  =  ( F..^ L ) )
17 simp1 1000 . . . . . 6  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  s  =  S )
1817dmeqd 4894 . . . . 5  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  dom  s  =  dom  S )
1916, 18sseq12d 3228 . . . 4  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  (
( ( 1st `  b
)..^ ( 2nd `  b
) )  C_  dom  s 
<->  ( F..^ L ) 
C_  dom  S )
)
2015, 14oveq12d 5980 . . . . . 6  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  (
( 2nd `  b
)  -  ( 1st `  b ) )  =  ( L  -  F
) )
2120oveq2d 5978 . . . . 5  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  (
0..^ ( ( 2nd `  b )  -  ( 1st `  b ) ) )  =  ( 0..^ ( L  -  F
) ) )
2214oveq2d 5978 . . . . . 6  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  (
x  +  ( 1st `  b ) )  =  ( x  +  F
) )
2317, 22fveq12d 5601 . . . . 5  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  (
s `  ( x  +  ( 1st `  b
) ) )  =  ( S `  (
x  +  F ) ) )
2421, 23mpteq12dv 4137 . . . 4  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  (
x  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
x  +  ( 1st `  b ) ) ) )  =  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F
) ) ) )
2519, 24ifbieq1d 3598 . . 3  |-  ( ( s  =  S  /\  ( 1st `  b )  =  F  /\  ( 2nd `  b )  =  L )  ->  if ( ( ( 1st `  b )..^ ( 2nd `  b ) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
x  +  ( 1st `  b ) ) ) ) ,  (/) )  =  if ( ( F..^ L )  C_  dom  S ,  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( S `  (
x  +  F ) ) ) ,  (/) ) )
263, 8, 13, 25syl3anc 1250 . 2  |-  ( ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  /\  ( s  =  S  /\  b  = 
<. F ,  L >. ) )  ->  if (
( ( 1st `  b
)..^ ( 2nd `  b
) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b )  -  ( 1st `  b
) ) )  |->  ( s `  ( x  +  ( 1st `  b
) ) ) ) ,  (/) )  =  if ( ( F..^ L
)  C_  dom  S , 
( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) ) ,  (/) ) )
27 elex 2785 . . 3  |-  ( S  e.  V  ->  S  e.  _V )
28273ad2ant1 1021 . 2  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  S  e.  _V )
29 opelxpi 4720 . . 3  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  -> 
<. F ,  L >.  e.  ( ZZ  X.  ZZ ) )
30293adant1 1018 . 2  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  <. F ,  L >.  e.  ( ZZ 
X.  ZZ ) )
31 0zd 9414 . . . . 5  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  0  e.  ZZ )
32 simp3 1002 . . . . . 6  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  L  e.  ZZ )
33 simp2 1001 . . . . . 6  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  F  e.  ZZ )
3432, 33zsubcld 9530 . . . . 5  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( L  -  F )  e.  ZZ )
35 fzofig 10609 . . . . 5  |-  ( ( 0  e.  ZZ  /\  ( L  -  F
)  e.  ZZ )  ->  ( 0..^ ( L  -  F ) )  e.  Fin )
3631, 34, 35syl2anc 411 . . . 4  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  (
0..^ ( L  -  F ) )  e. 
Fin )
3736mptexd 5829 . . 3  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( S `
 ( x  +  F ) ) )  e.  _V )
38 0ex 4182 . . . 4  |-  (/)  e.  _V
3938a1i 9 . . 3  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  (/)  e.  _V )
4037, 39ifexd 4544 . 2  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  if ( ( F..^ L
)  C_  dom  S , 
( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) ) ,  (/) )  e. 
_V )
412, 26, 28, 30, 40ovmpod 6091 1  |-  ( ( S  e.  V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( S substr  <. F ,  L >. )  =  if ( ( F..^ L ) 
C_  dom  S , 
( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) ) ,  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   _Vcvv 2773    C_ wss 3170   (/)c0 3464   ifcif 3575   <.cop 3641    |-> cmpt 4116    X. cxp 4686   dom cdm 4688   ` cfv 5285  (class class class)co 5962    e. cmpo 5964   1stc1st 6242   2ndc2nd 6243   Fincfn 6845   0cc0 7955    + caddc 7958    - cmin 8273   ZZcz 9402  ..^cfzo 10294   substr csubstr 11131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-1o 6520  df-er 6638  df-en 6846  df-fin 6848  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-n0 9326  df-z 9403  df-uz 9679  df-fz 10161  df-fzo 10295  df-substr 11132
This theorem is referenced by:  swrd00g  11135  swrdclg  11136  swrdval2  11137  swrdlend  11144  swrdnd  11145  swrd0g  11146  pfxval  11160  fnpfx  11163
  Copyright terms: Public domain W3C validator