| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > swrdfv2 | Unicode version | ||
| Description: A symbol in an extracted subword, indexed using the word's indices. (Contributed by AV, 5-May-2020.) |
| Ref | Expression |
|---|---|
| swrdfv2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. . . . 5
| |
| 2 | simpl 109 |
. . . . . . . 8
| |
| 3 | eluznn0 9720 |
. . . . . . . 8
| |
| 4 | eluzle 9660 |
. . . . . . . . 9
| |
| 5 | 4 | adantl 277 |
. . . . . . . 8
|
| 6 | 2, 3, 5 | 3jca 1180 |
. . . . . . 7
|
| 7 | 6 | 3ad2ant2 1022 |
. . . . . 6
|
| 8 | elfz2nn0 10234 |
. . . . . 6
| |
| 9 | 7, 8 | sylibr 134 |
. . . . 5
|
| 10 | 3 | anim1i 340 |
. . . . . . 7
|
| 11 | 10 | 3adant1 1018 |
. . . . . 6
|
| 12 | lencl 10998 |
. . . . . . . 8
| |
| 13 | 12 | 3ad2ant1 1021 |
. . . . . . 7
|
| 14 | fznn0 10235 |
. . . . . . 7
| |
| 15 | 13, 14 | syl 14 |
. . . . . 6
|
| 16 | 11, 15 | mpbird 167 |
. . . . 5
|
| 17 | 1, 9, 16 | 3jca 1180 |
. . . 4
|
| 18 | 17 | adantr 276 |
. . 3
|
| 19 | nn0cn 9305 |
. . . . . . . . . 10
| |
| 20 | eluzelcn 9659 |
. . . . . . . . . 10
| |
| 21 | pncan3 8280 |
. . . . . . . . . 10
| |
| 22 | 19, 20, 21 | syl2an 289 |
. . . . . . . . 9
|
| 23 | 22 | eqcomd 2211 |
. . . . . . . 8
|
| 24 | 23 | 3ad2ant2 1022 |
. . . . . . 7
|
| 25 | 24 | oveq2d 5960 |
. . . . . 6
|
| 26 | 25 | eleq2d 2275 |
. . . . 5
|
| 27 | 26 | biimpa 296 |
. . . 4
|
| 28 | eluzelz 9657 |
. . . . . . . 8
| |
| 29 | 28 | adantl 277 |
. . . . . . 7
|
| 30 | nn0z 9392 |
. . . . . . . 8
| |
| 31 | 30 | adantr 276 |
. . . . . . 7
|
| 32 | 29, 31 | zsubcld 9500 |
. . . . . 6
|
| 33 | 32 | 3ad2ant2 1022 |
. . . . 5
|
| 34 | 33 | adantr 276 |
. . . 4
|
| 35 | fzosubel3 10325 |
. . . 4
| |
| 36 | 27, 34, 35 | syl2anc 411 |
. . 3
|
| 37 | swrdfv 11106 |
. . 3
| |
| 38 | 18, 36, 37 | syl2anc 411 |
. 2
|
| 39 | elfzoelz 10269 |
. . . . 5
| |
| 40 | 39 | zcnd 9496 |
. . . 4
|
| 41 | 19 | adantr 276 |
. . . . 5
|
| 42 | 41 | 3ad2ant2 1022 |
. . . 4
|
| 43 | npcan 8281 |
. . . 4
| |
| 44 | 40, 42, 43 | syl2anr 290 |
. . 3
|
| 45 | 44 | fveq2d 5580 |
. 2
|
| 46 | 38, 45 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-1o 6502 df-er 6620 df-en 6828 df-dom 6829 df-fin 6830 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 df-fzo 10265 df-ihash 10921 df-word 10995 df-substr 11099 |
| This theorem is referenced by: swrdspsleq 11120 |
| Copyright terms: Public domain | W3C validator |