ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdfv Unicode version

Theorem swrdfv 11180
Description: A symbol in an extracted subword, indexed using the subword's indices. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
swrdfv  |-  ( ( ( S  e. Word  A  /\  F  e.  (
0 ... L )  /\  L  e.  ( 0 ... ( `  S
) ) )  /\  X  e.  ( 0..^ ( L  -  F
) ) )  -> 
( ( S substr  <. F ,  L >. ) `  X
)  =  ( S `
 ( X  +  F ) ) )

Proof of Theorem swrdfv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 swrdval2 11178 . . . 4  |-  ( ( S  e. Word  A  /\  F  e.  ( 0 ... L )  /\  L  e.  ( 0 ... ( `  S
) ) )  -> 
( S substr  <. F ,  L >. )  =  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( S `
 ( x  +  F ) ) ) )
21fveq1d 5628 . . 3  |-  ( ( S  e. Word  A  /\  F  e.  ( 0 ... L )  /\  L  e.  ( 0 ... ( `  S
) ) )  -> 
( ( S substr  <. F ,  L >. ) `  X
)  =  ( ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( S `
 ( x  +  F ) ) ) `
 X ) )
32adantr 276 . 2  |-  ( ( ( S  e. Word  A  /\  F  e.  (
0 ... L )  /\  L  e.  ( 0 ... ( `  S
) ) )  /\  X  e.  ( 0..^ ( L  -  F
) ) )  -> 
( ( S substr  <. F ,  L >. ) `  X
)  =  ( ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( S `
 ( x  +  F ) ) ) `
 X ) )
4 eqid 2229 . . 3  |-  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F
) ) )  =  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( S `  ( x  +  F ) ) )
5 fvoveq1 6023 . . 3  |-  ( x  =  X  ->  ( S `  ( x  +  F ) )  =  ( S `  ( X  +  F )
) )
6 simpr 110 . . 3  |-  ( ( ( S  e. Word  A  /\  F  e.  (
0 ... L )  /\  L  e.  ( 0 ... ( `  S
) ) )  /\  X  e.  ( 0..^ ( L  -  F
) ) )  ->  X  e.  ( 0..^ ( L  -  F
) ) )
7 simpl1 1024 . . . 4  |-  ( ( ( S  e. Word  A  /\  F  e.  (
0 ... L )  /\  L  e.  ( 0 ... ( `  S
) ) )  /\  X  e.  ( 0..^ ( L  -  F
) ) )  ->  S  e. Word  A )
8 elfzoelz 10339 . . . . . 6  |-  ( X  e.  ( 0..^ ( L  -  F ) )  ->  X  e.  ZZ )
98adantl 277 . . . . 5  |-  ( ( ( S  e. Word  A  /\  F  e.  (
0 ... L )  /\  L  e.  ( 0 ... ( `  S
) ) )  /\  X  e.  ( 0..^ ( L  -  F
) ) )  ->  X  e.  ZZ )
10 elfzelz 10217 . . . . . . 7  |-  ( F  e.  ( 0 ... L )  ->  F  e.  ZZ )
11103ad2ant2 1043 . . . . . 6  |-  ( ( S  e. Word  A  /\  F  e.  ( 0 ... L )  /\  L  e.  ( 0 ... ( `  S
) ) )  ->  F  e.  ZZ )
1211adantr 276 . . . . 5  |-  ( ( ( S  e. Word  A  /\  F  e.  (
0 ... L )  /\  L  e.  ( 0 ... ( `  S
) ) )  /\  X  e.  ( 0..^ ( L  -  F
) ) )  ->  F  e.  ZZ )
139, 12zaddcld 9569 . . . 4  |-  ( ( ( S  e. Word  A  /\  F  e.  (
0 ... L )  /\  L  e.  ( 0 ... ( `  S
) ) )  /\  X  e.  ( 0..^ ( L  -  F
) ) )  -> 
( X  +  F
)  e.  ZZ )
14 fvexg 5645 . . . 4  |-  ( ( S  e. Word  A  /\  ( X  +  F
)  e.  ZZ )  ->  ( S `  ( X  +  F
) )  e.  _V )
157, 13, 14syl2anc 411 . . 3  |-  ( ( ( S  e. Word  A  /\  F  e.  (
0 ... L )  /\  L  e.  ( 0 ... ( `  S
) ) )  /\  X  e.  ( 0..^ ( L  -  F
) ) )  -> 
( S `  ( X  +  F )
)  e.  _V )
164, 5, 6, 15fvmptd3 5727 . 2  |-  ( ( ( S  e. Word  A  /\  F  e.  (
0 ... L )  /\  L  e.  ( 0 ... ( `  S
) ) )  /\  X  e.  ( 0..^ ( L  -  F
) ) )  -> 
( ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( S `  (
x  +  F ) ) ) `  X
)  =  ( S `
 ( X  +  F ) ) )
173, 16eqtrd 2262 1  |-  ( ( ( S  e. Word  A  /\  F  e.  (
0 ... L )  /\  L  e.  ( 0 ... ( `  S
) ) )  /\  X  e.  ( 0..^ ( L  -  F
) ) )  -> 
( ( S substr  <. F ,  L >. ) `  X
)  =  ( S `
 ( X  +  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   _Vcvv 2799   <.cop 3669    |-> cmpt 4144   ` cfv 5317  (class class class)co 6000   0cc0 7995    + caddc 7998    - cmin 8313   ZZcz 9442   ...cfz 10200  ..^cfzo 10334  ♯chash 10992  Word cword 11066   substr csubstr 11172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-substr 11173
This theorem is referenced by:  swrdfv0  11181  swrdfv2  11190  swrds1  11195  ccatswrd  11197  swrdccat2  11198  pfxfv  11211  ccatpfx  11228  swrdswrd  11232  swrdccatin1  11252  swrdccatin2  11256  pfxccatin12lem2  11258  pfxccatin12lem3  11259
  Copyright terms: Public domain W3C validator