ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zzlesq Unicode version

Theorem zzlesq 10930
Description: An integer is less than or equal to its square. (Contributed by BJ, 6-Feb-2025.)
Assertion
Ref Expression
zzlesq  |-  ( N  e.  ZZ  ->  N  <_  ( N ^ 2 ) )

Proof of Theorem zzlesq
StepHypRef Expression
1 elznn 9462 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN  \/  -u N  e.  NN0 ) ) )
2 animorrl 831 . . . 4  |-  ( ( N  e.  RR  /\  N  e.  NN )  ->  ( N  e.  NN  \/  ( N  e.  RR  /\  -u N  e.  NN0 ) ) )
3 olc 716 . . . 4  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( N  e.  NN  \/  ( N  e.  RR  /\  -u N  e.  NN0 ) ) )
42, 3jaodan 802 . . 3  |-  ( ( N  e.  RR  /\  ( N  e.  NN  \/  -u N  e.  NN0 ) )  ->  ( N  e.  NN  \/  ( N  e.  RR  /\  -u N  e.  NN0 ) ) )
51, 4sylbi 121 . 2  |-  ( N  e.  ZZ  ->  ( N  e.  NN  \/  ( N  e.  RR  /\  -u N  e.  NN0 ) ) )
6 nnlesq 10865 . . 3  |-  ( N  e.  NN  ->  N  <_  ( N ^ 2 ) )
7 simpl 109 . . . 4  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  N  e.  RR )
8 0red 8147 . . . 4  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  0  e.  RR )
97resqcld 10921 . . . 4  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( N ^ 2 )  e.  RR )
10 nn0ge0 9394 . . . . 5  |-  ( -u N  e.  NN0  ->  0  <_ 
-u N )
11 le0neg1 8617 . . . . . 6  |-  ( N  e.  RR  ->  ( N  <_  0  <->  0  <_  -u N ) )
1211biimpar 297 . . . . 5  |-  ( ( N  e.  RR  /\  0  <_  -u N )  ->  N  <_  0 )
1310, 12sylan2 286 . . . 4  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  N  <_  0 )
147sqge0d 10922 . . . 4  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  0  <_  ( N ^ 2 ) )
157, 8, 9, 13, 14letrd 8270 . . 3  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  N  <_  ( N ^ 2 ) )
166, 15jaoi 721 . 2  |-  ( ( N  e.  NN  \/  ( N  e.  RR  /\  -u N  e.  NN0 ) )  ->  N  <_  ( N ^ 2 ) )
175, 16syl 14 1  |-  ( N  e.  ZZ  ->  N  <_  ( N ^ 2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   RRcr 7998   0cc0 7999    <_ cle 8182   -ucneg 8318   NNcn 9110   2c2 9161   NN0cn0 9369   ZZcz 9446   ^cexp 10760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670  df-exp 10761
This theorem is referenced by:  4sqexercise1  12921  4sqexercise2  12922  4sqlemsdc  12923
  Copyright terms: Public domain W3C validator