ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3d GIF version

Theorem 2lgslem3d 15783
Description: Lemma for 2lgslem3d1 15787. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3d ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 7)) → 𝑁 = ((2 · 𝐾) + 2))

Proof of Theorem 2lgslem3d
StepHypRef Expression
1 2lgslem2.n . . 3 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
2 oveq1 6014 . . . . 5 (𝑃 = ((8 · 𝐾) + 7) → (𝑃 − 1) = (((8 · 𝐾) + 7) − 1))
32oveq1d 6022 . . . 4 (𝑃 = ((8 · 𝐾) + 7) → ((𝑃 − 1) / 2) = ((((8 · 𝐾) + 7) − 1) / 2))
4 fvoveq1 6030 . . . 4 (𝑃 = ((8 · 𝐾) + 7) → (⌊‘(𝑃 / 4)) = (⌊‘(((8 · 𝐾) + 7) / 4)))
53, 4oveq12d 6025 . . 3 (𝑃 = ((8 · 𝐾) + 7) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (((((8 · 𝐾) + 7) − 1) / 2) − (⌊‘(((8 · 𝐾) + 7) / 4))))
61, 5eqtrid 2274 . 2 (𝑃 = ((8 · 𝐾) + 7) → 𝑁 = (((((8 · 𝐾) + 7) − 1) / 2) − (⌊‘(((8 · 𝐾) + 7) / 4))))
7 8nn0 9400 . . . . . . . . . . 11 8 ∈ ℕ0
87a1i 9 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℕ0)
9 id 19 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℕ0)
108, 9nn0mulcld 9435 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℕ0)
1110nn0cnd 9432 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℂ)
12 7cn 9202 . . . . . . . . 9 7 ∈ ℂ
1312a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ0 → 7 ∈ ℂ)
14 1cnd 8170 . . . . . . . 8 (𝐾 ∈ ℕ0 → 1 ∈ ℂ)
1511, 13, 14addsubassd 8485 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 7) − 1) = ((8 · 𝐾) + (7 − 1)))
16 4t2e8 9277 . . . . . . . . . . . 12 (4 · 2) = 8
1716eqcomi 2233 . . . . . . . . . . 11 8 = (4 · 2)
1817a1i 9 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 = (4 · 2))
1918oveq1d 6022 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((4 · 2) · 𝐾))
20 4cn 9196 . . . . . . . . . . 11 4 ∈ ℂ
2120a1i 9 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 4 ∈ ℂ)
22 2cn 9189 . . . . . . . . . . 11 2 ∈ ℂ
2322a1i 9 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 2 ∈ ℂ)
24 nn0cn 9387 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2521, 23, 24mul32d 8307 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((4 · 2) · 𝐾) = ((4 · 𝐾) · 2))
2619, 25eqtrd 2262 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((4 · 𝐾) · 2))
27 7m1e6 9242 . . . . . . . . 9 (7 − 1) = 6
2827a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ0 → (7 − 1) = 6)
2926, 28oveq12d 6025 . . . . . . 7 (𝐾 ∈ ℕ0 → ((8 · 𝐾) + (7 − 1)) = (((4 · 𝐾) · 2) + 6))
3015, 29eqtrd 2262 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 7) − 1) = (((4 · 𝐾) · 2) + 6))
3130oveq1d 6022 . . . . 5 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 7) − 1) / 2) = ((((4 · 𝐾) · 2) + 6) / 2))
32 4nn0 9396 . . . . . . . . . 10 4 ∈ ℕ0
3332a1i 9 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 4 ∈ ℕ0)
3433, 9nn0mulcld 9435 . . . . . . . 8 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℕ0)
3534nn0cnd 9432 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℂ)
3635, 23mulcld 8175 . . . . . 6 (𝐾 ∈ ℕ0 → ((4 · 𝐾) · 2) ∈ ℂ)
37 6cn 9200 . . . . . . 7 6 ∈ ℂ
3837a1i 9 . . . . . 6 (𝐾 ∈ ℕ0 → 6 ∈ ℂ)
39 2rp 9862 . . . . . . . 8 2 ∈ ℝ+
4039a1i 9 . . . . . . 7 (𝐾 ∈ ℕ0 → 2 ∈ ℝ+)
4140rpap0d 9906 . . . . . 6 (𝐾 ∈ ℕ0 → 2 # 0)
4236, 38, 23, 41divdirapd 8984 . . . . 5 (𝐾 ∈ ℕ0 → ((((4 · 𝐾) · 2) + 6) / 2) = ((((4 · 𝐾) · 2) / 2) + (6 / 2)))
4335, 23, 41divcanap4d 8951 . . . . . 6 (𝐾 ∈ ℕ0 → (((4 · 𝐾) · 2) / 2) = (4 · 𝐾))
44 3t2e6 9275 . . . . . . . . . 10 (3 · 2) = 6
4544eqcomi 2233 . . . . . . . . 9 6 = (3 · 2)
4645oveq1i 6017 . . . . . . . 8 (6 / 2) = ((3 · 2) / 2)
47 3cn 9193 . . . . . . . . 9 3 ∈ ℂ
48 2ap0 9211 . . . . . . . . 9 2 # 0
4947, 22, 48divcanap4i 8914 . . . . . . . 8 ((3 · 2) / 2) = 3
5046, 49eqtri 2250 . . . . . . 7 (6 / 2) = 3
5150a1i 9 . . . . . 6 (𝐾 ∈ ℕ0 → (6 / 2) = 3)
5243, 51oveq12d 6025 . . . . 5 (𝐾 ∈ ℕ0 → ((((4 · 𝐾) · 2) / 2) + (6 / 2)) = ((4 · 𝐾) + 3))
5331, 42, 523eqtrd 2266 . . . 4 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 7) − 1) / 2) = ((4 · 𝐾) + 3))
54 4ap0 9217 . . . . . . . . 9 4 # 0
5554a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 # 0)
5611, 13, 21, 55divdirapd 8984 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 7) / 4) = (((8 · 𝐾) / 4) + (7 / 4)))
57 8cn 9204 . . . . . . . . . . 11 8 ∈ ℂ
5857a1i 9 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℂ)
5958, 24, 21, 55div23apd 8983 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
6017oveq1i 6017 . . . . . . . . . . . 12 (8 / 4) = ((4 · 2) / 4)
6122, 20, 54divcanap3i 8913 . . . . . . . . . . . 12 ((4 · 2) / 4) = 2
6260, 61eqtri 2250 . . . . . . . . . . 11 (8 / 4) = 2
6362a1i 9 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (8 / 4) = 2)
6463oveq1d 6022 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 / 4) · 𝐾) = (2 · 𝐾))
6559, 64eqtrd 2262 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = (2 · 𝐾))
6665oveq1d 6022 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) / 4) + (7 / 4)) = ((2 · 𝐾) + (7 / 4)))
6756, 66eqtrd 2262 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 7) / 4) = ((2 · 𝐾) + (7 / 4)))
6867fveq2d 5633 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 7) / 4)) = (⌊‘((2 · 𝐾) + (7 / 4))))
69 3lt4 9291 . . . . . 6 3 < 4
70 2nn0 9394 . . . . . . . . . . . 12 2 ∈ ℕ0
7170a1i 9 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → 2 ∈ ℕ0)
7271, 9nn0mulcld 9435 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℕ0)
7372nn0zd 9575 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℤ)
7473peano2zd 9580 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((2 · 𝐾) + 1) ∈ ℤ)
75 3nn0 9395 . . . . . . . . 9 3 ∈ ℕ0
7675a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ0 → 3 ∈ ℕ0)
77 4nn 9282 . . . . . . . . 9 4 ∈ ℕ
7877a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 ∈ ℕ)
79 adddivflid 10520 . . . . . . . 8 ((((2 · 𝐾) + 1) ∈ ℤ ∧ 3 ∈ ℕ0 ∧ 4 ∈ ℕ) → (3 < 4 ↔ (⌊‘(((2 · 𝐾) + 1) + (3 / 4))) = ((2 · 𝐾) + 1)))
8074, 76, 78, 79syl3anc 1271 . . . . . . 7 (𝐾 ∈ ℕ0 → (3 < 4 ↔ (⌊‘(((2 · 𝐾) + 1) + (3 / 4))) = ((2 · 𝐾) + 1)))
8123, 24mulcld 8175 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℂ)
8247a1i 9 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → 3 ∈ ℂ)
8382, 21, 55divclapd 8945 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (3 / 4) ∈ ℂ)
8481, 14, 83addassd 8177 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (((2 · 𝐾) + 1) + (3 / 4)) = ((2 · 𝐾) + (1 + (3 / 4))))
85 4p3e7 9263 . . . . . . . . . . . . . . 15 (4 + 3) = 7
8685eqcomi 2233 . . . . . . . . . . . . . 14 7 = (4 + 3)
8786oveq1i 6017 . . . . . . . . . . . . 13 (7 / 4) = ((4 + 3) / 4)
8820, 47, 20, 54divdirapi 8924 . . . . . . . . . . . . 13 ((4 + 3) / 4) = ((4 / 4) + (3 / 4))
8920, 54dividapi 8900 . . . . . . . . . . . . . 14 (4 / 4) = 1
9089oveq1i 6017 . . . . . . . . . . . . 13 ((4 / 4) + (3 / 4)) = (1 + (3 / 4))
9187, 88, 903eqtri 2254 . . . . . . . . . . . 12 (7 / 4) = (1 + (3 / 4))
9291a1i 9 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (7 / 4) = (1 + (3 / 4)))
9392eqcomd 2235 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (1 + (3 / 4)) = (7 / 4))
9493oveq2d 6023 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((2 · 𝐾) + (1 + (3 / 4))) = ((2 · 𝐾) + (7 / 4)))
9584, 94eqtrd 2262 . . . . . . . 8 (𝐾 ∈ ℕ0 → (((2 · 𝐾) + 1) + (3 / 4)) = ((2 · 𝐾) + (7 / 4)))
9695fveqeq2d 5637 . . . . . . 7 (𝐾 ∈ ℕ0 → ((⌊‘(((2 · 𝐾) + 1) + (3 / 4))) = ((2 · 𝐾) + 1) ↔ (⌊‘((2 · 𝐾) + (7 / 4))) = ((2 · 𝐾) + 1)))
9780, 96bitrd 188 . . . . . 6 (𝐾 ∈ ℕ0 → (3 < 4 ↔ (⌊‘((2 · 𝐾) + (7 / 4))) = ((2 · 𝐾) + 1)))
9869, 97mpbii 148 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘((2 · 𝐾) + (7 / 4))) = ((2 · 𝐾) + 1))
9968, 98eqtrd 2262 . . . 4 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 7) / 4)) = ((2 · 𝐾) + 1))
10053, 99oveq12d 6025 . . 3 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 7) − 1) / 2) − (⌊‘(((8 · 𝐾) + 7) / 4))) = (((4 · 𝐾) + 3) − ((2 · 𝐾) + 1)))
10172nn0cnd 9432 . . . 4 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℂ)
10235, 82, 101, 14addsub4d 8512 . . 3 (𝐾 ∈ ℕ0 → (((4 · 𝐾) + 3) − ((2 · 𝐾) + 1)) = (((4 · 𝐾) − (2 · 𝐾)) + (3 − 1)))
103 2t2e4 9273 . . . . . . . . . 10 (2 · 2) = 4
104103eqcomi 2233 . . . . . . . . 9 4 = (2 · 2)
105104a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 = (2 · 2))
106105oveq1d 6022 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) = ((2 · 2) · 𝐾))
10723, 23, 24mulassd 8178 . . . . . . 7 (𝐾 ∈ ℕ0 → ((2 · 2) · 𝐾) = (2 · (2 · 𝐾)))
108106, 107eqtrd 2262 . . . . . 6 (𝐾 ∈ ℕ0 → (4 · 𝐾) = (2 · (2 · 𝐾)))
109108oveq1d 6022 . . . . 5 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = ((2 · (2 · 𝐾)) − (2 · 𝐾)))
110 2txmxeqx 9250 . . . . . 6 ((2 · 𝐾) ∈ ℂ → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
111101, 110syl 14 . . . . 5 (𝐾 ∈ ℕ0 → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
112109, 111eqtrd 2262 . . . 4 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = (2 · 𝐾))
113 3m1e2 9238 . . . . 5 (3 − 1) = 2
114113a1i 9 . . . 4 (𝐾 ∈ ℕ0 → (3 − 1) = 2)
115112, 114oveq12d 6025 . . 3 (𝐾 ∈ ℕ0 → (((4 · 𝐾) − (2 · 𝐾)) + (3 − 1)) = ((2 · 𝐾) + 2))
116100, 102, 1153eqtrd 2266 . 2 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 7) − 1) / 2) − (⌊‘(((8 · 𝐾) + 7) / 4))) = ((2 · 𝐾) + 2))
1176, 116sylan9eqr 2284 1 ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 7)) → 𝑁 = ((2 · 𝐾) + 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200   class class class wbr 4083  cfv 5318  (class class class)co 6007  cc 8005  0cc0 8007  1c1 8008   + caddc 8010   · cmul 8012   < clt 8189  cmin 8325   # cap 8736   / cdiv 8827  cn 9118  2c2 9169  3c3 9170  4c4 9171  6c6 9173  7c7 9174  8c8 9175  0cn0 9377  cz 9454  +crp 9857  cfl 10496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-n0 9378  df-z 9455  df-q 9823  df-rp 9858  df-fl 10498
This theorem is referenced by:  2lgslem3d1  15787
  Copyright terms: Public domain W3C validator