ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3d GIF version

Theorem 2lgslem3d 15740
Description: Lemma for 2lgslem3d1 15744. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3d ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 7)) → 𝑁 = ((2 · 𝐾) + 2))

Proof of Theorem 2lgslem3d
StepHypRef Expression
1 2lgslem2.n . . 3 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
2 oveq1 5981 . . . . 5 (𝑃 = ((8 · 𝐾) + 7) → (𝑃 − 1) = (((8 · 𝐾) + 7) − 1))
32oveq1d 5989 . . . 4 (𝑃 = ((8 · 𝐾) + 7) → ((𝑃 − 1) / 2) = ((((8 · 𝐾) + 7) − 1) / 2))
4 fvoveq1 5997 . . . 4 (𝑃 = ((8 · 𝐾) + 7) → (⌊‘(𝑃 / 4)) = (⌊‘(((8 · 𝐾) + 7) / 4)))
53, 4oveq12d 5992 . . 3 (𝑃 = ((8 · 𝐾) + 7) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (((((8 · 𝐾) + 7) − 1) / 2) − (⌊‘(((8 · 𝐾) + 7) / 4))))
61, 5eqtrid 2254 . 2 (𝑃 = ((8 · 𝐾) + 7) → 𝑁 = (((((8 · 𝐾) + 7) − 1) / 2) − (⌊‘(((8 · 𝐾) + 7) / 4))))
7 8nn0 9360 . . . . . . . . . . 11 8 ∈ ℕ0
87a1i 9 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℕ0)
9 id 19 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℕ0)
108, 9nn0mulcld 9395 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℕ0)
1110nn0cnd 9392 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℂ)
12 7cn 9162 . . . . . . . . 9 7 ∈ ℂ
1312a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ0 → 7 ∈ ℂ)
14 1cnd 8130 . . . . . . . 8 (𝐾 ∈ ℕ0 → 1 ∈ ℂ)
1511, 13, 14addsubassd 8445 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 7) − 1) = ((8 · 𝐾) + (7 − 1)))
16 4t2e8 9237 . . . . . . . . . . . 12 (4 · 2) = 8
1716eqcomi 2213 . . . . . . . . . . 11 8 = (4 · 2)
1817a1i 9 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 = (4 · 2))
1918oveq1d 5989 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((4 · 2) · 𝐾))
20 4cn 9156 . . . . . . . . . . 11 4 ∈ ℂ
2120a1i 9 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 4 ∈ ℂ)
22 2cn 9149 . . . . . . . . . . 11 2 ∈ ℂ
2322a1i 9 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 2 ∈ ℂ)
24 nn0cn 9347 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2521, 23, 24mul32d 8267 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((4 · 2) · 𝐾) = ((4 · 𝐾) · 2))
2619, 25eqtrd 2242 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((4 · 𝐾) · 2))
27 7m1e6 9202 . . . . . . . . 9 (7 − 1) = 6
2827a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ0 → (7 − 1) = 6)
2926, 28oveq12d 5992 . . . . . . 7 (𝐾 ∈ ℕ0 → ((8 · 𝐾) + (7 − 1)) = (((4 · 𝐾) · 2) + 6))
3015, 29eqtrd 2242 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 7) − 1) = (((4 · 𝐾) · 2) + 6))
3130oveq1d 5989 . . . . 5 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 7) − 1) / 2) = ((((4 · 𝐾) · 2) + 6) / 2))
32 4nn0 9356 . . . . . . . . . 10 4 ∈ ℕ0
3332a1i 9 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 4 ∈ ℕ0)
3433, 9nn0mulcld 9395 . . . . . . . 8 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℕ0)
3534nn0cnd 9392 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℂ)
3635, 23mulcld 8135 . . . . . 6 (𝐾 ∈ ℕ0 → ((4 · 𝐾) · 2) ∈ ℂ)
37 6cn 9160 . . . . . . 7 6 ∈ ℂ
3837a1i 9 . . . . . 6 (𝐾 ∈ ℕ0 → 6 ∈ ℂ)
39 2rp 9822 . . . . . . . 8 2 ∈ ℝ+
4039a1i 9 . . . . . . 7 (𝐾 ∈ ℕ0 → 2 ∈ ℝ+)
4140rpap0d 9866 . . . . . 6 (𝐾 ∈ ℕ0 → 2 # 0)
4236, 38, 23, 41divdirapd 8944 . . . . 5 (𝐾 ∈ ℕ0 → ((((4 · 𝐾) · 2) + 6) / 2) = ((((4 · 𝐾) · 2) / 2) + (6 / 2)))
4335, 23, 41divcanap4d 8911 . . . . . 6 (𝐾 ∈ ℕ0 → (((4 · 𝐾) · 2) / 2) = (4 · 𝐾))
44 3t2e6 9235 . . . . . . . . . 10 (3 · 2) = 6
4544eqcomi 2213 . . . . . . . . 9 6 = (3 · 2)
4645oveq1i 5984 . . . . . . . 8 (6 / 2) = ((3 · 2) / 2)
47 3cn 9153 . . . . . . . . 9 3 ∈ ℂ
48 2ap0 9171 . . . . . . . . 9 2 # 0
4947, 22, 48divcanap4i 8874 . . . . . . . 8 ((3 · 2) / 2) = 3
5046, 49eqtri 2230 . . . . . . 7 (6 / 2) = 3
5150a1i 9 . . . . . 6 (𝐾 ∈ ℕ0 → (6 / 2) = 3)
5243, 51oveq12d 5992 . . . . 5 (𝐾 ∈ ℕ0 → ((((4 · 𝐾) · 2) / 2) + (6 / 2)) = ((4 · 𝐾) + 3))
5331, 42, 523eqtrd 2246 . . . 4 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 7) − 1) / 2) = ((4 · 𝐾) + 3))
54 4ap0 9177 . . . . . . . . 9 4 # 0
5554a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 # 0)
5611, 13, 21, 55divdirapd 8944 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 7) / 4) = (((8 · 𝐾) / 4) + (7 / 4)))
57 8cn 9164 . . . . . . . . . . 11 8 ∈ ℂ
5857a1i 9 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℂ)
5958, 24, 21, 55div23apd 8943 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
6017oveq1i 5984 . . . . . . . . . . . 12 (8 / 4) = ((4 · 2) / 4)
6122, 20, 54divcanap3i 8873 . . . . . . . . . . . 12 ((4 · 2) / 4) = 2
6260, 61eqtri 2230 . . . . . . . . . . 11 (8 / 4) = 2
6362a1i 9 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (8 / 4) = 2)
6463oveq1d 5989 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 / 4) · 𝐾) = (2 · 𝐾))
6559, 64eqtrd 2242 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = (2 · 𝐾))
6665oveq1d 5989 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) / 4) + (7 / 4)) = ((2 · 𝐾) + (7 / 4)))
6756, 66eqtrd 2242 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 7) / 4) = ((2 · 𝐾) + (7 / 4)))
6867fveq2d 5607 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 7) / 4)) = (⌊‘((2 · 𝐾) + (7 / 4))))
69 3lt4 9251 . . . . . 6 3 < 4
70 2nn0 9354 . . . . . . . . . . . 12 2 ∈ ℕ0
7170a1i 9 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → 2 ∈ ℕ0)
7271, 9nn0mulcld 9395 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℕ0)
7372nn0zd 9535 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℤ)
7473peano2zd 9540 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((2 · 𝐾) + 1) ∈ ℤ)
75 3nn0 9355 . . . . . . . . 9 3 ∈ ℕ0
7675a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ0 → 3 ∈ ℕ0)
77 4nn 9242 . . . . . . . . 9 4 ∈ ℕ
7877a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 ∈ ℕ)
79 adddivflid 10479 . . . . . . . 8 ((((2 · 𝐾) + 1) ∈ ℤ ∧ 3 ∈ ℕ0 ∧ 4 ∈ ℕ) → (3 < 4 ↔ (⌊‘(((2 · 𝐾) + 1) + (3 / 4))) = ((2 · 𝐾) + 1)))
8074, 76, 78, 79syl3anc 1252 . . . . . . 7 (𝐾 ∈ ℕ0 → (3 < 4 ↔ (⌊‘(((2 · 𝐾) + 1) + (3 / 4))) = ((2 · 𝐾) + 1)))
8123, 24mulcld 8135 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℂ)
8247a1i 9 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → 3 ∈ ℂ)
8382, 21, 55divclapd 8905 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (3 / 4) ∈ ℂ)
8481, 14, 83addassd 8137 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (((2 · 𝐾) + 1) + (3 / 4)) = ((2 · 𝐾) + (1 + (3 / 4))))
85 4p3e7 9223 . . . . . . . . . . . . . . 15 (4 + 3) = 7
8685eqcomi 2213 . . . . . . . . . . . . . 14 7 = (4 + 3)
8786oveq1i 5984 . . . . . . . . . . . . 13 (7 / 4) = ((4 + 3) / 4)
8820, 47, 20, 54divdirapi 8884 . . . . . . . . . . . . 13 ((4 + 3) / 4) = ((4 / 4) + (3 / 4))
8920, 54dividapi 8860 . . . . . . . . . . . . . 14 (4 / 4) = 1
9089oveq1i 5984 . . . . . . . . . . . . 13 ((4 / 4) + (3 / 4)) = (1 + (3 / 4))
9187, 88, 903eqtri 2234 . . . . . . . . . . . 12 (7 / 4) = (1 + (3 / 4))
9291a1i 9 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (7 / 4) = (1 + (3 / 4)))
9392eqcomd 2215 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (1 + (3 / 4)) = (7 / 4))
9493oveq2d 5990 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((2 · 𝐾) + (1 + (3 / 4))) = ((2 · 𝐾) + (7 / 4)))
9584, 94eqtrd 2242 . . . . . . . 8 (𝐾 ∈ ℕ0 → (((2 · 𝐾) + 1) + (3 / 4)) = ((2 · 𝐾) + (7 / 4)))
9695fveqeq2d 5611 . . . . . . 7 (𝐾 ∈ ℕ0 → ((⌊‘(((2 · 𝐾) + 1) + (3 / 4))) = ((2 · 𝐾) + 1) ↔ (⌊‘((2 · 𝐾) + (7 / 4))) = ((2 · 𝐾) + 1)))
9780, 96bitrd 188 . . . . . 6 (𝐾 ∈ ℕ0 → (3 < 4 ↔ (⌊‘((2 · 𝐾) + (7 / 4))) = ((2 · 𝐾) + 1)))
9869, 97mpbii 148 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘((2 · 𝐾) + (7 / 4))) = ((2 · 𝐾) + 1))
9968, 98eqtrd 2242 . . . 4 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 7) / 4)) = ((2 · 𝐾) + 1))
10053, 99oveq12d 5992 . . 3 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 7) − 1) / 2) − (⌊‘(((8 · 𝐾) + 7) / 4))) = (((4 · 𝐾) + 3) − ((2 · 𝐾) + 1)))
10172nn0cnd 9392 . . . 4 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℂ)
10235, 82, 101, 14addsub4d 8472 . . 3 (𝐾 ∈ ℕ0 → (((4 · 𝐾) + 3) − ((2 · 𝐾) + 1)) = (((4 · 𝐾) − (2 · 𝐾)) + (3 − 1)))
103 2t2e4 9233 . . . . . . . . . 10 (2 · 2) = 4
104103eqcomi 2213 . . . . . . . . 9 4 = (2 · 2)
105104a1i 9 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 = (2 · 2))
106105oveq1d 5989 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) = ((2 · 2) · 𝐾))
10723, 23, 24mulassd 8138 . . . . . . 7 (𝐾 ∈ ℕ0 → ((2 · 2) · 𝐾) = (2 · (2 · 𝐾)))
108106, 107eqtrd 2242 . . . . . 6 (𝐾 ∈ ℕ0 → (4 · 𝐾) = (2 · (2 · 𝐾)))
109108oveq1d 5989 . . . . 5 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = ((2 · (2 · 𝐾)) − (2 · 𝐾)))
110 2txmxeqx 9210 . . . . . 6 ((2 · 𝐾) ∈ ℂ → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
111101, 110syl 14 . . . . 5 (𝐾 ∈ ℕ0 → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
112109, 111eqtrd 2242 . . . 4 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = (2 · 𝐾))
113 3m1e2 9198 . . . . 5 (3 − 1) = 2
114113a1i 9 . . . 4 (𝐾 ∈ ℕ0 → (3 − 1) = 2)
115112, 114oveq12d 5992 . . 3 (𝐾 ∈ ℕ0 → (((4 · 𝐾) − (2 · 𝐾)) + (3 − 1)) = ((2 · 𝐾) + 2))
116100, 102, 1153eqtrd 2246 . 2 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 7) − 1) / 2) − (⌊‘(((8 · 𝐾) + 7) / 4))) = ((2 · 𝐾) + 2))
1176, 116sylan9eqr 2264 1 ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 7)) → 𝑁 = ((2 · 𝐾) + 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180   class class class wbr 4062  cfv 5294  (class class class)co 5974  cc 7965  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972   < clt 8149  cmin 8285   # cap 8696   / cdiv 8787  cn 9078  2c2 9129  3c3 9130  4c4 9131  6c6 9133  7c7 9134  8c8 9135  0cn0 9337  cz 9414  +crp 9817  cfl 10455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-n0 9338  df-z 9415  df-q 9783  df-rp 9818  df-fl 10457
This theorem is referenced by:  2lgslem3d1  15744
  Copyright terms: Public domain W3C validator