Theorem List for Intuitionistic Logic Explorer - 11901-12000 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | summodclem2 11901* |
Lemma for summodc 11902. (Contributed by Mario Carneiro,
3-Apr-2014.)
(Revised by Jim Kingdon, 4-May-2023.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) ⇒ ⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
| |
| Theorem | summodc 11902* |
A sum has at most one limit. (Contributed by Mario Carneiro,
3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) ⇒ ⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)))) |
| |
| Theorem | zsumdc 11903* |
Series sum with index set a subset of the upper integers.
(Contributed by Mario Carneiro, 13-Jun-2019.) (Revised by Jim
Kingdon, 8-Apr-2023.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑍 DECID 𝑥 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹))) |
| |
| Theorem | isum 11904* |
Series sum with an upper integer index set (i.e. an infinite series).
(Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario
Carneiro, 7-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹))) |
| |
| Theorem | fsumgcl 11905* |
Closure for a function used to describe a sum over a nonempty finite
set. (Contributed by Jim Kingdon, 10-Oct-2022.)
|
| ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶)
& ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) |
| |
| Theorem | fsum3 11906* |
The value of a sum over a nonempty finite set. (Contributed by Jim
Kingdon, 10-Oct-2022.)
|
| ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶)
& ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀)) |
| |
| Theorem | sum0 11907 |
Any sum over the empty set is zero. (Contributed by Mario Carneiro,
12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
|
| ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| |
| Theorem | isumz 11908* |
Any sum of zero over a summable set is zero. (Contributed by Mario
Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
|
| ⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) ∨ 𝐴 ∈ Fin) → Σ𝑘 ∈ 𝐴 0 = 0) |
| |
| Theorem | fsumf1o 11909* |
Re-index a finite sum using a bijection. (Contributed by Mario
Carneiro, 20-Apr-2014.)
|
| ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷)
& ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴)
& ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑛 ∈ 𝐶 𝐷) |
| |
| Theorem | isumss 11910* |
Change the index set to a subset in an upper integer sum.
(Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim
Kingdon, 21-Sep-2022.)
|
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) & ⊢ (𝜑 → ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ⊆
(ℤ≥‘𝑀)) & ⊢ (𝜑 → ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| |
| Theorem | fisumss 11911* |
Change the index set to a subset in a finite sum. (Contributed by Mario
Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 23-Sep-2022.)
|
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) & ⊢ (𝜑 → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| |
| Theorem | isumss2 11912* |
Change the index set of a sum by adding zeroes. The nonzero elements
are in the contained set 𝐴 and the added zeroes compose the
rest of
the containing set 𝐵 which needs to be summable.
(Contributed by
Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
|
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵)
& ⊢ (𝜑 → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴)
& ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) & ⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) ∨ 𝐵 ∈ Fin))
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 𝐶, 0)) |
| |
| Theorem | fsum3cvg2 11913* |
The sequence of partial sums of a finite sum converges to the whole sum.
(Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon,
2-Dec-2022.)
|
| ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁)) |
| |
| Theorem | fsumsersdc 11914* |
Special case of series sum over a finite upper integer index set.
(Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Jim
Kingdon, 5-May-2023.)
|
| ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (seq𝑀( + , 𝐹)‘𝑁)) |
| |
| Theorem | fsum3cvg3 11915* |
A finite sum is convergent. (Contributed by Mario Carneiro,
24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| |
| Theorem | fsum3ser 11916* |
A finite sum expressed in terms of a partial sum of an infinite series.
The recursive definition follows as fsum1 11931 and fsump1 11939, which should
make our notation clear and from which, along with closure fsumcl 11919, we
will derive the basic properties of finite sums. (Contributed by NM,
11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
|
| ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = 𝐴)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁)) |
| |
| Theorem | fsumcl2lem 11917* |
- Lemma for finite sum closures. (The "-" before "Lemma"
forces the
math content to be displayed in the Statement List - NM 11-Feb-2008.)
(Contributed by Mario Carneiro, 3-Jun-2014.)
|
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ≠ ∅)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| |
| Theorem | fsumcllem 11918* |
- Lemma for finite sum closures. (The "-" before "Lemma"
forces the
math content to be displayed in the Statement List - NM 11-Feb-2008.)
(Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro,
3-Jun-2014.)
|
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 0 ∈ 𝑆) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| |
| Theorem | fsumcl 11919* |
Closure of a finite sum of complex numbers 𝐴(𝑘). (Contributed
by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| |
| Theorem | fsumrecl 11920* |
Closure of a finite sum of reals. (Contributed by NM, 9-Nov-2005.)
(Revised by Mario Carneiro, 22-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ) |
| |
| Theorem | fsumzcl 11921* |
Closure of a finite sum of integers. (Contributed by NM, 9-Nov-2005.)
(Revised by Mario Carneiro, 22-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℤ) |
| |
| Theorem | fsumnn0cl 11922* |
Closure of a finite sum of nonnegative integers. (Contributed by
Mario Carneiro, 23-Apr-2015.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈
ℕ0) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈
ℕ0) |
| |
| Theorem | fsumrpcl 11923* |
Closure of a finite sum of positive reals. (Contributed by Mario
Carneiro, 3-Jun-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈
ℝ+) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈
ℝ+) |
| |
| Theorem | fsumzcl2 11924* |
A finite sum with integer summands is an integer. (Contributed by
Alexander van der Vekens, 31-Aug-2018.)
|
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℤ) |
| |
| Theorem | fsumadd 11925* |
The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised
by Mario Carneiro, 22-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶)) |
| |
| Theorem | fsumsplit 11926* |
Split a sum into two parts. (Contributed by Mario Carneiro,
18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
|
| ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
| |
| Theorem | fsumsplitf 11927* |
Split a sum into two parts. A version of fsumsplit 11926 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
| |
| Theorem | sumsnf 11928* |
A sum of a singleton is the term. A version of sumsn 11930 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝐵
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| |
| Theorem | fsumsplitsn 11929* |
Separate out a term in a finite sum. (Contributed by Glauco Siliprandi,
5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ Ⅎ𝑘𝐷
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷)
& ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + 𝐷)) |
| |
| Theorem | sumsn 11930* |
A sum of a singleton is the term. (Contributed by Mario Carneiro,
22-Apr-2014.)
|
| ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| |
| Theorem | fsum1 11931* |
The finite sum of 𝐴(𝑘) from 𝑘 = 𝑀 to 𝑀 (i.e. a sum with
only one term) is 𝐵 i.e. 𝐴(𝑀). (Contributed by NM,
8-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
|
| ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ (𝑀...𝑀)𝐴 = 𝐵) |
| |
| Theorem | sumpr 11932* |
A sum over a pair is the sum of the elements. (Contributed by Thierry
Arnoux, 12-Dec-2016.)
|
| ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷)
& ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸)
& ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)) & ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) |
| |
| Theorem | sumtp 11933* |
A sum over a triple is the sum of the elements. (Contributed by AV,
24-Jul-2020.)
|
| ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸)
& ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹)
& ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺)
& ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)) & ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵)
& ⊢ (𝜑 → 𝐴 ≠ 𝐶)
& ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺)) |
| |
| Theorem | sumsns 11934* |
A sum of a singleton is the term. (Contributed by Mario Carneiro,
22-Apr-2014.)
|
| ⊢ ((𝑀 ∈ 𝑉 ∧ ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
| |
| Theorem | fsumm1 11935* |
Separate out the last term in a finite sum. (Contributed by Mario
Carneiro, 26-Apr-2014.)
|
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵)) |
| |
| Theorem | fzosump1 11936* |
Separate out the last term in a finite sum. (Contributed by Mario
Carneiro, 13-Apr-2016.)
|
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^(𝑁 + 1))𝐴 = (Σ𝑘 ∈ (𝑀..^𝑁)𝐴 + 𝐵)) |
| |
| Theorem | fsum1p 11937* |
Separate out the first term in a finite sum. (Contributed by NM,
3-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
| |
| Theorem | fsumsplitsnun 11938* |
Separate out a term in a finite sum by splitting the sum into two parts.
(Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV,
17-Dec-2021.)
|
| ⊢ ((𝐴 ∈ Fin ∧ (𝑍 ∈ 𝑉 ∧ 𝑍 ∉ 𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘 ∈ 𝐴 𝐵 + ⦋𝑍 / 𝑘⦌𝐵)) |
| |
| Theorem | fsump1 11939* |
The addition of the next term in a finite sum of 𝐴(𝑘) is the
current term plus 𝐵 i.e. 𝐴(𝑁 + 1). (Contributed by NM,
4-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
|
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ) & ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (Σ𝑘 ∈ (𝑀...𝑁)𝐴 + 𝐵)) |
| |
| Theorem | isumclim 11940* |
An infinite sum equals the value its series converges to.
(Contributed by NM, 25-Dec-2005.) (Revised by Mario Carneiro,
23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = 𝐵) |
| |
| Theorem | isumclim2 11941* |
A converging series converges to its infinite sum. (Contributed by NM,
2-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
| |
| Theorem | isumclim3 11942* |
The sequence of partial finite sums of a converging infinite series
converges to the infinite sum of the series. Note that 𝑗 must
not
occur in 𝐴. (Contributed by NM, 9-Jan-2006.)
(Revised by Mario
Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) ⇒ ⊢ (𝜑 → 𝐹 ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
| |
| Theorem | sumnul 11943* |
The sum of a non-convergent infinite series evaluates to the empty
set. (Contributed by Paul Chapman, 4-Nov-2007.) (Revised by Mario
Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ∅) |
| |
| Theorem | isumcl 11944* |
The sum of a converging infinite series is a complex number.
(Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro,
23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ∈ ℂ) |
| |
| Theorem | isummulc2 11945* |
An infinite sum multiplied by a constant. (Contributed by NM,
12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐵 · Σ𝑘 ∈ 𝑍 𝐴) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) |
| |
| Theorem | isummulc1 11946* |
An infinite sum multiplied by a constant. (Contributed by NM,
13-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝑍 𝐴 · 𝐵) = Σ𝑘 ∈ 𝑍 (𝐴 · 𝐵)) |
| |
| Theorem | isumdivapc 11947* |
An infinite sum divided by a constant. (Contributed by NM, 2-Jan-2006.)
(Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝑍 𝐴 / 𝐵) = Σ𝑘 ∈ 𝑍 (𝐴 / 𝐵)) |
| |
| Theorem | isumrecl 11948* |
The sum of a converging infinite real series is a real number.
(Contributed by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ∈ ℝ) |
| |
| Theorem | isumge0 11949* |
An infinite sum of nonnegative terms is nonnegative. (Contributed by
Mario Carneiro, 28-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝑍 𝐴) |
| |
| Theorem | isumadd 11950* |
Addition of infinite sums. (Contributed by Mario Carneiro,
18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 (𝐴 + 𝐵) = (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
| |
| Theorem | sumsplitdc 11951* |
Split a sum into two parts. (Contributed by Mario Carneiro,
18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → DECID 𝑘 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → DECID 𝑘 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐶, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = if(𝑘 ∈ 𝐵, 𝐶, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ 𝐵)) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
| |
| Theorem | fsump1i 11952* |
Optimized version of fsump1 11939 for making sums of a concrete number of
terms. (Contributed by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑁 = (𝐾 + 1) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝐾 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆)) & ⊢ (𝜑 → (𝑆 + 𝐵) = 𝑇) ⇒ ⊢ (𝜑 → (𝑁 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇)) |
| |
| Theorem | fsum2dlemstep 11953* |
Lemma for fsum2d 11954- induction step. (Contributed by Mario
Carneiro,
23-Apr-2014.) (Revised by Jim Kingdon, 8-Oct-2022.)
|
| ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ¬ 𝑦 ∈ 𝑥)
& ⊢ (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
& ⊢ (𝜑 → 𝑥 ∈ Fin) & ⊢ (𝜓 ↔ Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷) |
| |
| Theorem | fsum2d 11954* |
Write a double sum as a sum over a two-dimensional region. Note that
𝐵(𝑗) is a function of 𝑗.
(Contributed by Mario Carneiro,
27-Apr-2014.)
|
| ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐷) |
| |
| Theorem | fsumxp 11955* |
Combine two sums into a single sum over the cartesian product.
(Contributed by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ (𝐴 × 𝐵)𝐷) |
| |
| Theorem | fsumcnv 11956* |
Transform a region of summation by using the converse operation.
(Contributed by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ (𝑥 = 〈𝑗, 𝑘〉 → 𝐵 = 𝐷)
& ⊢ (𝑦 = 〈𝑘, 𝑗〉 → 𝐶 = 𝐷)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → Rel 𝐴)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 𝐵 = Σ𝑦 ∈ ◡ 𝐴𝐶) |
| |
| Theorem | fisumcom2 11957* |
Interchange order of summation. Note that 𝐵(𝑗) and 𝐷(𝑘)
are not necessarily constant expressions. (Contributed by Mario
Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
(Proof shortened by JJ, 2-Aug-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐷 ∈ Fin) & ⊢ (𝜑 → ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) ↔ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷))) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐸 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐸 = Σ𝑘 ∈ 𝐶 Σ𝑗 ∈ 𝐷 𝐸) |
| |
| Theorem | fsumcom 11958* |
Interchange order of summation. (Contributed by NM, 15-Nov-2005.)
(Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑘 ∈ 𝐵 Σ𝑗 ∈ 𝐴 𝐶) |
| |
| Theorem | fsum0diaglem 11959* |
Lemma for fisum0diag 11960. (Contributed by Mario Carneiro,
28-Apr-2014.)
(Revised by Mario Carneiro, 8-Apr-2016.)
|
| ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 𝑘)))) |
| |
| Theorem | fisum0diag 11960* |
Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular
region 𝑀 ≤ 𝑗, 𝑀 ≤ 𝑘, 𝑗 + 𝑘 ≤ 𝑁". (Contributed by NM,
31-Dec-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
(Revised by Mario Carneiro, 8-Apr-2016.)
|
| ⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...(𝑁 − 𝑘))𝐴) |
| |
| Theorem | mptfzshft 11961* |
1-1 onto function in maps-to notation which shifts a finite set of
sequential integers. (Contributed by AV, 24-Aug-2019.)
|
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁)) |
| |
| Theorem | fsumrev 11962* |
Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised
by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝐾 − 𝑘) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝐵) |
| |
| Theorem | fsumshft 11963* |
Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.)
(Revised by Mario Carneiro, 24-Apr-2014.) (Proof shortened by AV,
8-Sep-2019.)
|
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
| |
| Theorem | fsumshftm 11964* |
Negative index shift of a finite sum. (Contributed by NM,
28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
| |
| Theorem | fisumrev2 11965* |
Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised
by Mario Carneiro, 13-Apr-2016.)
|
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
| |
| Theorem | fisum0diag2 11966* |
Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular
region 0 ≤ 𝑗, 0 ≤ 𝑘, 𝑗 + 𝑘 ≤ 𝑁". (Contributed by
Mario Carneiro, 21-Jul-2014.)
|
| ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐴)
& ⊢ (𝑥 = (𝑘 − 𝑗) → 𝐵 = 𝐶)
& ⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)𝐶) |
| |
| Theorem | fsummulc2 11967* |
A finite sum multiplied by a constant. (Contributed by NM,
12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵)) |
| |
| Theorem | fsummulc1 11968* |
A finite sum multiplied by a constant. (Contributed by NM,
13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
| |
| Theorem | fsumdivapc 11969* |
A finite sum divided by a constant. (Contributed by NM, 2-Jan-2006.)
(Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 / 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 / 𝐶)) |
| |
| Theorem | fsumneg 11970* |
Negation of a finite sum. (Contributed by Scott Fenton, 12-Jun-2013.)
(Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 -𝐵 = -Σ𝑘 ∈ 𝐴 𝐵) |
| |
| Theorem | fsumsub 11971* |
Split a finite sum over a subtraction. (Contributed by Scott Fenton,
12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 − 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 − Σ𝑘 ∈ 𝐴 𝐶)) |
| |
| Theorem | fsum2mul 11972* |
Separate the nested sum of the product 𝐶(𝑗) · 𝐷(𝑘).
(Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro,
24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 (𝐶 · 𝐷) = (Σ𝑗 ∈ 𝐴 𝐶 · Σ𝑘 ∈ 𝐵 𝐷)) |
| |
| Theorem | fsumconst 11973* |
The sum of constant terms (𝑘 is not free in 𝐵). (Contributed
by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵)) |
| |
| Theorem | fsumdifsnconst 11974* |
The sum of constant terms (𝑘 is not free in 𝐶) over an index
set excluding a singleton. (Contributed by AV, 7-Jan-2022.)
|
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ℂ) → Σ𝑘 ∈ (𝐴 ∖ {𝐵})𝐶 = (((♯‘𝐴) − 1) · 𝐶)) |
| |
| Theorem | modfsummodlem1 11975* |
Lemma for modfsummod 11977. (Contributed by Alexander van der Vekens,
1-Sep-2018.)
|
| ⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) |
| |
| Theorem | modfsummodlemstep 11976* |
Induction step for modfsummod 11977. (Contributed by Alexander van der
Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐴)
& ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁)) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) |
| |
| Theorem | modfsummod 11977* |
A finite sum modulo a positive integer equals the finite sum of their
summands modulo the positive integer, modulo the positive integer.
(Contributed by Alexander van der Vekens, 1-Sep-2018.)
|
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁)) |
| |
| Theorem | fsumge0 11978* |
If all of the terms of a finite sum are nonnegative, so is the sum.
(Contributed by NM, 26-Dec-2005.) (Revised by Mario Carneiro,
24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| |
| Theorem | fsumlessfi 11979* |
A shorter sum of nonnegative terms is no greater than a longer one.
(Contributed by NM, 26-Dec-2005.) (Revised by Jim Kingdon,
12-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵)
& ⊢ (𝜑 → 𝐶 ⊆ 𝐴)
& ⊢ (𝜑 → 𝐶 ∈ Fin) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| |
| Theorem | fsumge1 11980* |
A sum of nonnegative numbers is greater than or equal to any one of
its terms. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof
shortened by Mario Carneiro, 4-Jun-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵)
& ⊢ (𝑘 = 𝑀 → 𝐵 = 𝐶)
& ⊢ (𝜑 → 𝑀 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| |
| Theorem | fsum00 11981* |
A sum of nonnegative numbers is zero iff all terms are zero.
(Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario
Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 = 0 ↔ ∀𝑘 ∈ 𝐴 𝐵 = 0)) |
| |
| Theorem | fsumle 11982* |
If all of the terms of finite sums compare, so do the sums.
(Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro,
24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | fsumlt 11983* |
If every term in one finite sum is less than the corresponding term in
another, then the first sum is less than the second. (Contributed by
Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Jun-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 < Σ𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | fsumabs 11984* |
Generalized triangle inequality: the absolute value of a finite sum is
less than or equal to the sum of absolute values. (Contributed by NM,
9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵)) |
| |
| Theorem | telfsumo 11985* |
Sum of a telescoping series, using half-open intervals. (Contributed by
Mario Carneiro, 2-May-2016.)
|
| ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵)
& ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷)
& ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 − 𝐶) = (𝐷 − 𝐸)) |
| |
| Theorem | telfsumo2 11986* |
Sum of a telescoping series. (Contributed by Mario Carneiro,
2-May-2016.)
|
| ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵)
& ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷)
& ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
| |
| Theorem | telfsum 11987* |
Sum of a telescoping series. (Contributed by Scott Fenton,
24-Apr-2014.) (Revised by Mario Carneiro, 2-May-2016.)
|
| ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵)
& ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷)
& ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
& ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐵 − 𝐶) = (𝐷 − 𝐸)) |
| |
| Theorem | telfsum2 11988* |
Sum of a telescoping series. (Contributed by Mario Carneiro,
15-Jun-2014.) (Revised by Mario Carneiro, 2-May-2016.)
|
| ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵)
& ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷)
& ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
& ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
| |
| Theorem | fsumparts 11989* |
Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
|
| ⊢ (𝑘 = 𝑗 → (𝐴 = 𝐵 ∧ 𝑉 = 𝑊)) & ⊢ (𝑘 = (𝑗 + 1) → (𝐴 = 𝐶 ∧ 𝑉 = 𝑋)) & ⊢ (𝑘 = 𝑀 → (𝐴 = 𝐷 ∧ 𝑉 = 𝑌)) & ⊢ (𝑘 = 𝑁 → (𝐴 = 𝐸 ∧ 𝑉 = 𝑍)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑉 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋 − 𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 − 𝐵) · 𝑋))) |
| |
| Theorem | fsumrelem 11990* |
Lemma for fsumre 11991, fsumim 11992, and fsumcj 11993. (Contributed by Mario
Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐹:ℂ⟶ℂ & ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) |
| |
| Theorem | fsumre 11991* |
The real part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.)
(Revised by Mario Carneiro, 25-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (ℜ‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (ℜ‘𝐵)) |
| |
| Theorem | fsumim 11992* |
The imaginary part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.)
(Revised by Mario Carneiro, 25-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (ℑ‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (ℑ‘𝐵)) |
| |
| Theorem | fsumcj 11993* |
The complex conjugate of a sum. (Contributed by Paul Chapman,
9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (∗‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (∗‘𝐵)) |
| |
| Theorem | iserabs 11994* |
Generalized triangle inequality: the absolute value of an infinite sum
is less than or equal to the sum of absolute values. (Contributed by
Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
& ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (abs‘𝐴) ≤ 𝐵) |
| |
| Theorem | cvgcmpub 11995* |
An upper bound for the limit of a real infinite series. This theorem
can also be used to compare two infinite series. (Contributed by Mario
Carneiro, 24-Mar-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
& ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
| |
| Theorem | fsumiun 11996* |
Sum over a disjoint indexed union. (Contributed by Mario Carneiro,
1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝐶 = Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶) |
| |
| Theorem | hashiun 11997* |
The cardinality of a disjoint indexed union. (Contributed by Mario
Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ𝑥 ∈ 𝐴 (♯‘𝐵)) |
| |
| Theorem | hash2iun 11998* |
The cardinality of a nested disjoint indexed union. (Contributed by AV,
9-Jan-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 (♯‘𝐶)) |
| |
| Theorem | hash2iun1dif1 11999* |
The cardinality of a nested disjoint indexed union. (Contributed by AV,
9-Jan-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ 𝐵 = (𝐴 ∖ {𝑥})
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (♯‘𝐶) = 1) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
| |
| Theorem | hashrabrex 12000* |
The number of elements in a class abstraction with a restricted
existential quantification. (Contributed by Alexander van der Vekens,
29-Jul-2018.)
|
| ⊢ (𝜑 → 𝑌 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → {𝑥 ∈ 𝑋 ∣ 𝜓} ∈ Fin) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ 𝜓}) ⇒ ⊢ (𝜑 → (♯‘{𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑌 𝜓}) = Σ𝑦 ∈ 𝑌 (♯‘{𝑥 ∈ 𝑋 ∣ 𝜓})) |