| Intuitionistic Logic Explorer Theorem List (p. 120 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | efi4p 11901* | Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) | ||
| Theorem | resin4p 11902* | Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) | ||
| Theorem | recos4p 11903* | Separate out the first four terms of the infinite series expansion of the cosine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) | ||
| Theorem | resincl 11904 | The sine of a real number is real. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ) | ||
| Theorem | recoscl 11905 | The cosine of a real number is real. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ) | ||
| Theorem | retanclap 11906 | The closure of the tangent function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) ∈ ℝ) | ||
| Theorem | resincld 11907 | Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℝ) | ||
| Theorem | recoscld 11908 | Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℝ) | ||
| Theorem | retanclapd 11909 | Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (cos‘𝐴) # 0) ⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℝ) | ||
| Theorem | sinneg 11910 | The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) | ||
| Theorem | cosneg 11911 | The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) | ||
| Theorem | tannegap 11912 | The tangent of a negative is the negative of the tangent. (Contributed by David A. Wheeler, 23-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘-𝐴) = -(tan‘𝐴)) | ||
| Theorem | sin0 11913 | Value of the sine function at 0. (Contributed by Steve Rodriguez, 14-Mar-2005.) |
| ⊢ (sin‘0) = 0 | ||
| Theorem | cos0 11914 | Value of the cosine function at 0. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (cos‘0) = 1 | ||
| Theorem | tan0 11915 | The value of the tangent function at zero is zero. (Contributed by David A. Wheeler, 16-Mar-2014.) |
| ⊢ (tan‘0) = 0 | ||
| Theorem | efival 11916 | The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) | ||
| Theorem | efmival 11917 | The exponential function in terms of sine and cosine. (Contributed by NM, 14-Jan-2006.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴)))) | ||
| Theorem | efeul 11918 | Eulerian representation of the complex exponential. (Suggested by Jeff Hankins, 3-Jul-2006.) (Contributed by NM, 4-Jul-2006.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((exp‘(ℜ‘𝐴)) · ((cos‘(ℑ‘𝐴)) + (i · (sin‘(ℑ‘𝐴)))))) | ||
| Theorem | efieq 11919 | The exponentials of two imaginary numbers are equal iff their sine and cosine components are equal. (Contributed by Paul Chapman, 15-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘(i · 𝐴)) = (exp‘(i · 𝐵)) ↔ ((cos‘𝐴) = (cos‘𝐵) ∧ (sin‘𝐴) = (sin‘𝐵)))) | ||
| Theorem | sinadd 11920 | Addition formula for sine. Equation 14 of [Gleason] p. 310. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | cosadd 11921 | Addition formula for cosine. Equation 15 of [Gleason] p. 310. (Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | tanaddaplem 11922 | A useful intermediate step in tanaddap 11923 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.) (Revised by Jim Kingdon, 25-Dec-2022.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((cos‘(𝐴 + 𝐵)) # 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) # 1)) | ||
| Theorem | tanaddap 11923 | Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0 ∧ (cos‘(𝐴 + 𝐵)) # 0)) → (tan‘(𝐴 + 𝐵)) = (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵))))) | ||
| Theorem | sinsub 11924 | Sine of difference. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 − 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | cossub 11925 | Cosine of difference. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 − 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | addsin 11926 | Sum of sines. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) + (sin‘𝐵)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | subsin 11927 | Difference of sines. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) − (sin‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | sinmul 11928 | Product of sines can be rewritten as half the difference of certain cosines. This follows from cosadd 11921 and cossub 11925. (Contributed by David A. Wheeler, 26-May-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) / 2)) | ||
| Theorem | cosmul 11929 | Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd 11921 and cossub 11925. (Contributed by David A. Wheeler, 26-May-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) = (((cos‘(𝐴 − 𝐵)) + (cos‘(𝐴 + 𝐵))) / 2)) | ||
| Theorem | addcos 11930 | Sum of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) + (cos‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | subcos 11931 | Difference of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) (Revised by Mario Carneiro, 10-May-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) − (cos‘𝐴)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | sincossq 11932 | Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.) |
| ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | ||
| Theorem | sin2t 11933 | Double-angle formula for sine. (Contributed by Paul Chapman, 17-Jan-2008.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘(2 · 𝐴)) = (2 · ((sin‘𝐴) · (cos‘𝐴)))) | ||
| Theorem | cos2t 11934 | Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1)) | ||
| Theorem | cos2tsin 11935 | Double-angle formula for cosine in terms of sine. (Contributed by NM, 12-Sep-2008.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2)))) | ||
| Theorem | sinbnd 11936 | The sine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1)) | ||
| Theorem | cosbnd 11937 | The cosine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1)) | ||
| Theorem | sinbnd2 11938 | The sine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.) |
| ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ (-1[,]1)) | ||
| Theorem | cosbnd2 11939 | The cosine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.) |
| ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ (-1[,]1)) | ||
| Theorem | ef01bndlem 11940* | Lemma for sin01bnd 11941 and cos01bnd 11942. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)) < ((𝐴↑4) / 6)) | ||
| Theorem | sin01bnd 11941 | Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)) | ||
| Theorem | cos01bnd 11942 | Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3)))) | ||
| Theorem | cos1bnd 11943 | Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) | ||
| Theorem | cos2bnd 11944 | Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (-(7 / 9) < (cos‘2) ∧ (cos‘2) < -(1 / 9)) | ||
| Theorem | sinltxirr 11945* | The sine of a positive irrational number is less than its argument. Here irrational means apart from any rational number. (Contributed by Mario Carneiro, 29-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → (sin‘𝐴) < 𝐴) | ||
| Theorem | sin01gt0 11946 | The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.) |
| ⊢ (𝐴 ∈ (0(,]1) → 0 < (sin‘𝐴)) | ||
| Theorem | cos01gt0 11947 | The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴)) | ||
| Theorem | sin02gt0 11948 | The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴)) | ||
| Theorem | sincos1sgn 11949 | The signs of the sine and cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (0 < (sin‘1) ∧ 0 < (cos‘1)) | ||
| Theorem | sincos2sgn 11950 | The signs of the sine and cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) | ||
| Theorem | sin4lt0 11951 | The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (sin‘4) < 0 | ||
| Theorem | cos12dec 11952 | Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.) |
| ⊢ ((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴)) | ||
| Theorem | absefi 11953 | The absolute value of the exponential of an imaginary number is one. Equation 48 of [Rudin] p. 167. (Contributed by Jason Orendorff, 9-Feb-2007.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = 1) | ||
| Theorem | absef 11954 | The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴))) | ||
| Theorem | absefib 11955 | A complex number is real iff the exponential of its product with i has absolute value one. (Contributed by NM, 21-Aug-2008.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1)) | ||
| Theorem | efieq1re 11956 | A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ) | ||
| Theorem | demoivre 11957 | De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula, but restricted to nonnegative integer powers. See also demoivreALT 11958 for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) | ||
| Theorem | demoivreALT 11958 | Alternate proof of demoivre 11957. It is longer but does not use the exponential function. This is Metamath 100 proof #17. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) | ||
| Syntax | ctau 11959 | Extend class notation to include the constant tau, τ = 6.28318.... |
| class τ | ||
| Definition | df-tau 11960 | Define the circle constant tau, τ = 6.28318..., which is the smallest positive real number whose cosine is one. Various notations have been used or proposed for this number including τ, a three-legged variant of π, or 2π. Note the difference between this constant τ and the formula variable 𝜏. Following our convention, the constant is displayed in upright font while the variable is in italic font; furthermore, the colors are different. (Contributed by Jim Kingdon, 9-Apr-2018.) (Revised by AV, 1-Oct-2020.) |
| ⊢ τ = inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) | ||
| Theorem | eirraplem 11961* | Lemma for eirrap 11962. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 5-Jan-2022.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) & ⊢ (𝜑 → 𝑃 ∈ ℤ) & ⊢ (𝜑 → 𝑄 ∈ ℕ) ⇒ ⊢ (𝜑 → e # (𝑃 / 𝑄)) | ||
| Theorem | eirrap 11962 | e is irrational. That is, for any rational number, e is apart from it. In the absence of excluded middle, we can distinguish between this and saying that e is not rational, which is eirr 11963. (Contributed by Jim Kingdon, 6-Jan-2023.) |
| ⊢ (𝑄 ∈ ℚ → e # 𝑄) | ||
| Theorem | eirr 11963 | e is not rational. In the absence of excluded middle, we can distinguish between this and saying that e is irrational in the sense of being apart from any rational number, which is eirrap 11962. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 6-Jan-2023.) |
| ⊢ e ∉ ℚ | ||
| Theorem | egt2lt3 11964 | Euler's constant e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 28-Nov-2008.) (Revised by Jim Kingdon, 7-Jan-2023.) |
| ⊢ (2 < e ∧ e < 3) | ||
| Theorem | epos 11965 | Euler's constant e is greater than 0. (Contributed by Jeff Hankins, 22-Nov-2008.) |
| ⊢ 0 < e | ||
| Theorem | epr 11966 | Euler's constant e is a positive real. (Contributed by Jeff Hankins, 22-Nov-2008.) |
| ⊢ e ∈ ℝ+ | ||
| Theorem | ene0 11967 | e is not 0. (Contributed by David A. Wheeler, 17-Oct-2017.) |
| ⊢ e ≠ 0 | ||
| Theorem | eap0 11968 | e is apart from 0. (Contributed by Jim Kingdon, 7-Jan-2023.) |
| ⊢ e # 0 | ||
| Theorem | ene1 11969 | e is not 1. (Contributed by David A. Wheeler, 17-Oct-2017.) |
| ⊢ e ≠ 1 | ||
| Theorem | eap1 11970 | e is apart from 1. (Contributed by Jim Kingdon, 7-Jan-2023.) |
| ⊢ e # 1 | ||
This part introduces elementary number theory, in particular the elementary properties of divisibility and elementary prime number theory. | ||
| Syntax | cdvds 11971 | Extend the definition of a class to include the divides relation. See df-dvds 11972. |
| class ∥ | ||
| Definition | df-dvds 11972* | Define the divides relation, see definition in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} | ||
| Theorem | divides 11973* | Define the divides relation. 𝑀 ∥ 𝑁 means 𝑀 divides into 𝑁 with no remainder. For example, 3 ∥ 6 (ex-dvds 15484). As proven in dvdsval3 11975, 𝑀 ∥ 𝑁 ↔ (𝑁 mod 𝑀) = 0. See divides 11973 and dvdsval2 11974 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) | ||
| Theorem | dvdsval2 11974 | One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) | ||
| Theorem | dvdsval3 11975 | One nonzero integer divides another integer if and only if the remainder upon division is zero, see remark in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 15-Jul-2014.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 mod 𝑀) = 0)) | ||
| Theorem | dvdszrcl 11976 | Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) | ||
| Theorem | dvdsmod0 11977 | If a positive integer divides another integer, then the remainder upon division is zero. (Contributed by AV, 3-Mar-2022.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝑁) → (𝑁 mod 𝑀) = 0) | ||
| Theorem | p1modz1 11978 | If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022.) |
| ⊢ ((𝑀 ∥ 𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1) | ||
| Theorem | dvdsmodexp 11979 | If a positive integer divides another integer, this other integer is equal to its positive powers modulo the positive integer. (Formerly part of the proof for fermltl 12429). (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by AV, 19-Mar-2022.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∥ 𝐴) → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁)) | ||
| Theorem | nndivdvds 11980 | Strong form of dvdsval2 11974 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ)) | ||
| Theorem | nndivides 11981* | Definition of the divides relation for positive integers. (Contributed by AV, 26-Jul-2021.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (𝑛 · 𝑀) = 𝑁)) | ||
| Theorem | dvdsdc 11982 | Divisibility is decidable. (Contributed by Jim Kingdon, 14-Nov-2021.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ∥ 𝑁) | ||
| Theorem | moddvds 11983 | Two ways to say 𝐴≡𝐵 (mod 𝑁), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 𝐵))) | ||
| Theorem | modm1div 11984 | An integer greater than one divides another integer minus one iff the second integer modulo the first integer is one. (Contributed by AV, 30-May-2023.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ 𝑁 ∥ (𝐴 − 1))) | ||
| Theorem | dvds0lem 11985 | A lemma to assist theorems of ∥ with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 · 𝑀) = 𝑁) → 𝑀 ∥ 𝑁) | ||
| Theorem | dvds1lem 11986* | A lemma to assist theorems of ∥ with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) & ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑍 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁)) ⇒ ⊢ (𝜑 → (𝐽 ∥ 𝐾 → 𝑀 ∥ 𝑁)) | ||
| Theorem | dvds2lem 11987* | A lemma to assist theorems of ∥ with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ)) & ⊢ (𝜑 → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) & ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑍 ∈ ℤ) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → (𝑍 · 𝑀) = 𝑁)) ⇒ ⊢ (𝜑 → ((𝐼 ∥ 𝐽 ∧ 𝐾 ∥ 𝐿) → 𝑀 ∥ 𝑁)) | ||
| Theorem | iddvds 11988 | An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) | ||
| Theorem | 1dvds 11989 | 1 divides any integer. Theorem 1.1(f) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → 1 ∥ 𝑁) | ||
| Theorem | dvds0 11990 | Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) | ||
| Theorem | negdvdsb 11991 | An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ -𝑀 ∥ 𝑁)) | ||
| Theorem | dvdsnegb 11992 | An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ -𝑁)) | ||
| Theorem | absdvdsb 11993 | An integer divides another iff its absolute value does. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (abs‘𝑀) ∥ 𝑁)) | ||
| Theorem | dvdsabsb 11994 | An integer divides another iff it divides its absolute value. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (abs‘𝑁))) | ||
| Theorem | 0dvds 11995 | Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 𝑁 = 0)) | ||
| Theorem | zdvdsdc 11996 | Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ∥ 𝑁) | ||
| Theorem | dvdsmul1 11997 | An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁)) | ||
| Theorem | dvdsmul2 11998 | An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁)) | ||
| Theorem | iddvdsexp 11999 | An integer divides a positive integer power of itself. (Contributed by Paul Chapman, 26-Oct-2012.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∥ (𝑀↑𝑁)) | ||
| Theorem | muldvds1 12000 | If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁 → 𝐾 ∥ 𝑁)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |