HomeHome Intuitionistic Logic Explorer
Theorem List (p. 120 of 156)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11901-12000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcos01bnd 11901 Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
(𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
 
Theoremcos1bnd 11902 Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.)
((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3))
 
Theoremcos2bnd 11903 Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.)
(-(7 / 9) < (cos‘2) ∧ (cos‘2) < -(1 / 9))
 
Theoremsinltxirr 11904* The sine of a positive irrational number is less than its argument. Here irrational means apart from any rational number. (Contributed by Mario Carneiro, 29-Jul-2014.)
((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → (sin‘𝐴) < 𝐴)
 
Theoremsin01gt0 11905 The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.)
(𝐴 ∈ (0(,]1) → 0 < (sin‘𝐴))
 
Theoremcos01gt0 11906 The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
(𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴))
 
Theoremsin02gt0 11907 The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
(𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴))
 
Theoremsincos1sgn 11908 The signs of the sine and cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.)
(0 < (sin‘1) ∧ 0 < (cos‘1))
 
Theoremsincos2sgn 11909 The signs of the sine and cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.)
(0 < (sin‘2) ∧ (cos‘2) < 0)
 
Theoremsin4lt0 11910 The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.)
(sin‘4) < 0
 
Theoremcos12dec 11911 Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.)
((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴))
 
Theoremabsefi 11912 The absolute value of the exponential of an imaginary number is one. Equation 48 of [Rudin] p. 167. (Contributed by Jason Orendorff, 9-Feb-2007.)
(𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = 1)
 
Theoremabsef 11913 The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007.)
(𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴)))
 
Theoremabsefib 11914 A complex number is real iff the exponential of its product with i has absolute value one. (Contributed by NM, 21-Aug-2008.)
(𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1))
 
Theoremefieq1re 11915 A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.)
((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ)
 
Theoremdemoivre 11916 De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula, but restricted to nonnegative integer powers. See also demoivreALT 11917 for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))
 
TheoremdemoivreALT 11917 Alternate proof of demoivre 11916. It is longer but does not use the exponential function. This is Metamath 100 proof #17. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))
 
4.10.1.1  The circle constant (tau = 2 pi)
 
Syntaxctau 11918 Extend class notation to include the constant tau, τ = 6.28318....
class τ
 
Definitiondf-tau 11919 Define the circle constant tau, τ = 6.28318..., which is the smallest positive real number whose cosine is one. Various notations have been used or proposed for this number including τ, a three-legged variant of π, or . Note the difference between this constant τ and the formula variable 𝜏. Following our convention, the constant is displayed in upright font while the variable is in italic font; furthermore, the colors are different. (Contributed by Jim Kingdon, 9-Apr-2018.) (Revised by AV, 1-Oct-2020.)
τ = inf((ℝ+ ∩ (cos “ {1})), ℝ, < )
 
4.10.2  _e is irrational
 
Theoremeirraplem 11920* Lemma for eirrap 11921. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 5-Jan-2022.)
𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))    &   (𝜑𝑃 ∈ ℤ)    &   (𝜑𝑄 ∈ ℕ)       (𝜑 → e # (𝑃 / 𝑄))
 
Theoremeirrap 11921 e is irrational. That is, for any rational number, e is apart from it. In the absence of excluded middle, we can distinguish between this and saying that e is not rational, which is eirr 11922. (Contributed by Jim Kingdon, 6-Jan-2023.)
(𝑄 ∈ ℚ → e # 𝑄)
 
Theoremeirr 11922 e is not rational. In the absence of excluded middle, we can distinguish between this and saying that e is irrational in the sense of being apart from any rational number, which is eirrap 11921. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 6-Jan-2023.)
e ∉ ℚ
 
Theoremegt2lt3 11923 Euler's constant e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 28-Nov-2008.) (Revised by Jim Kingdon, 7-Jan-2023.)
(2 < e ∧ e < 3)
 
Theoremepos 11924 Euler's constant e is greater than 0. (Contributed by Jeff Hankins, 22-Nov-2008.)
0 < e
 
Theoremepr 11925 Euler's constant e is a positive real. (Contributed by Jeff Hankins, 22-Nov-2008.)
e ∈ ℝ+
 
Theoremene0 11926 e is not 0. (Contributed by David A. Wheeler, 17-Oct-2017.)
e ≠ 0
 
Theoremeap0 11927 e is apart from 0. (Contributed by Jim Kingdon, 7-Jan-2023.)
e # 0
 
Theoremene1 11928 e is not 1. (Contributed by David A. Wheeler, 17-Oct-2017.)
e ≠ 1
 
Theoremeap1 11929 e is apart from 1. (Contributed by Jim Kingdon, 7-Jan-2023.)
e # 1
 
PART 5  ELEMENTARY NUMBER THEORY

This part introduces elementary number theory, in particular the elementary properties of divisibility and elementary prime number theory.

 
5.1  Elementary properties of divisibility
 
5.1.1  The divides relation
 
Syntaxcdvds 11930 Extend the definition of a class to include the divides relation. See df-dvds 11931.
class
 
Definitiondf-dvds 11931* Define the divides relation, see definition in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}
 
Theoremdivides 11932* Define the divides relation. 𝑀𝑁 means 𝑀 divides into 𝑁 with no remainder. For example, 3 ∥ 6 (ex-dvds 15222). As proven in dvdsval3 11934, 𝑀𝑁 ↔ (𝑁 mod 𝑀) = 0. See divides 11932 and dvdsval2 11933 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
 
Theoremdvdsval2 11933 One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.)
((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
 
Theoremdvdsval3 11934 One nonzero integer divides another integer if and only if the remainder upon division is zero, see remark in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 15-Jul-2014.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 mod 𝑀) = 0))
 
Theoremdvdszrcl 11935 Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.)
(𝑋𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
 
Theoremdvdsmod0 11936 If a positive integer divides another integer, then the remainder upon division is zero. (Contributed by AV, 3-Mar-2022.)
((𝑀 ∈ ℕ ∧ 𝑀𝑁) → (𝑁 mod 𝑀) = 0)
 
Theoremp1modz1 11937 If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022.)
((𝑀𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1)
 
Theoremdvdsmodexp 11938 If a positive integer divides another integer, this other integer is equal to its positive powers modulo the positive integer. (Formerly part of the proof for fermltl 12372). (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by AV, 19-Mar-2022.)
((𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁𝐴) → ((𝐴𝐵) mod 𝑁) = (𝐴 mod 𝑁))
 
Theoremnndivdvds 11939 Strong form of dvdsval2 11933 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ))
 
Theoremnndivides 11940* Definition of the divides relation for positive integers. (Contributed by AV, 26-Jul-2021.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℕ (𝑛 · 𝑀) = 𝑁))
 
Theoremdvdsdc 11941 Divisibility is decidable. (Contributed by Jim Kingdon, 14-Nov-2021.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
 
Theoremmoddvds 11942 Two ways to say 𝐴𝐵 (mod 𝑁), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝐵)))
 
Theoremmodm1div 11943 An integer greater than one divides another integer minus one iff the second integer modulo the first integer is one. (Contributed by AV, 30-May-2023.)
((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ 𝑁 ∥ (𝐴 − 1)))
 
Theoremdvds0lem 11944 A lemma to assist theorems of with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
(((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 · 𝑀) = 𝑁) → 𝑀𝑁)
 
Theoremdvds1lem 11945* A lemma to assist theorems of with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.)
(𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ))    &   (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))    &   ((𝜑𝑥 ∈ ℤ) → 𝑍 ∈ ℤ)    &   ((𝜑𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁))       (𝜑 → (𝐽𝐾𝑀𝑁))
 
Theoremdvds2lem 11946* A lemma to assist theorems of with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
(𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ))    &   (𝜑 → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ))    &   (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))    &   ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑍 ∈ ℤ)    &   ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → (𝑍 · 𝑀) = 𝑁))       (𝜑 → ((𝐼𝐽𝐾𝐿) → 𝑀𝑁))
 
Theoremiddvds 11947 An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
(𝑁 ∈ ℤ → 𝑁𝑁)
 
Theorem1dvds 11948 1 divides any integer. Theorem 1.1(f) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
(𝑁 ∈ ℤ → 1 ∥ 𝑁)
 
Theoremdvds0 11949 Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
(𝑁 ∈ ℤ → 𝑁 ∥ 0)
 
Theoremnegdvdsb 11950 An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ -𝑀𝑁))
 
Theoremdvdsnegb 11951 An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ -𝑁))
 
Theoremabsdvdsb 11952 An integer divides another iff its absolute value does. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ 𝑁))
 
Theoremdvdsabsb 11953 An integer divides another iff it divides its absolute value. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ (abs‘𝑁)))
 
Theorem0dvds 11954 Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
(𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
 
Theoremzdvdsdc 11955 Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
 
Theoremdvdsmul1 11956 An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁))
 
Theoremdvdsmul2 11957 An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))
 
Theoremiddvdsexp 11958 An integer divides a positive integer power of itself. (Contributed by Paul Chapman, 26-Oct-2012.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∥ (𝑀𝑁))
 
Theoremmuldvds1 11959 If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁𝐾𝑁))
 
Theoremmuldvds2 11960 If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁𝑀𝑁))
 
Theoremdvdscmul 11961 Multiplication by a constant maintains the divides relation. Theorem 1.1(d) in [ApostolNT] p. 14 (multiplication property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁)))
 
Theoremdvdsmulc 11962 Multiplication by a constant maintains the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾)))
 
Theoremdvdscmulr 11963 Cancellation law for the divides relation. Theorem 1.1(e) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∥ (𝐾 · 𝑁) ↔ 𝑀𝑁))
 
Theoremdvdsmulcr 11964 Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑀 · 𝐾) ∥ (𝑁 · 𝐾) ↔ 𝑀𝑁))
 
Theoremsummodnegmod 11965 The sum of two integers modulo a positive integer equals zero iff the first of the two integers equals the negative of the other integer modulo the positive integer. (Contributed by AV, 25-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 𝐵) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = (-𝐵 mod 𝑁)))
 
Theoremmodmulconst 11966 Constant multiplication in a modulo operation, see theorem 5.3 in [ApostolNT] p. 108. (Contributed by AV, 21-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀))))
 
Theoremdvds2ln 11967 If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
(((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ ((𝐼 · 𝑀) + (𝐽 · 𝑁))))
 
Theoremdvds2add 11968 If an integer divides each of two other integers, it divides their sum. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ (𝑀 + 𝑁)))
 
Theoremdvds2sub 11969 If an integer divides each of two other integers, it divides their difference. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ (𝑀𝑁)))
 
Theoremdvds2subd 11970 Deduction form of dvds2sub 11969. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾𝑀)    &   (𝜑𝐾𝑁)       (𝜑𝐾 ∥ (𝑀𝑁))
 
Theoremdvdstr 11971 The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝑀𝑁) → 𝐾𝑁))
 
Theoremdvds2addd 11972 Deduction form of dvds2add 11968. (Contributed by SN, 21-Aug-2024.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾𝑀)    &   (𝜑𝐾𝑁)       (𝜑𝐾 ∥ (𝑀 + 𝑁))
 
Theoremdvdstrd 11973 The divides relation is transitive, a deduction version of dvdstr 11971. (Contributed by metakunt, 12-May-2024.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾𝑀)    &   (𝜑𝑀𝑁)       (𝜑𝐾𝑁)
 
Theoremdvdsmultr1 11974 If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑀𝐾 ∥ (𝑀 · 𝑁)))
 
Theoremdvdsmultr1d 11975 Natural deduction form of dvdsmultr1 11974. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾𝑀)       (𝜑𝐾 ∥ (𝑀 · 𝑁))
 
Theoremdvdsmultr2 11976 If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑁𝐾 ∥ (𝑀 · 𝑁)))
 
Theoremordvdsmul 11977 If an integer divides either of two others, it divides their product. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ (𝑀 · 𝑁)))
 
Theoremdvdssub2 11978 If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.)
(((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀𝑁)) → (𝐾𝑀𝐾𝑁))
 
Theoremdvdsadd 11979 An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 13-Jul-2014.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ (𝑀 + 𝑁)))
 
Theoremdvdsaddr 11980 An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ (𝑁 + 𝑀)))
 
Theoremdvdssub 11981 An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ (𝑀𝑁)))
 
Theoremdvdssubr 11982 An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ (𝑁𝑀)))
 
Theoremdvdsadd2b 11983 Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
 
Theoremdvdsaddre2b 11984 Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b 11983 only requiring 𝐵 to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
 
Theoremdvdslelemd 11985 Lemma for dvdsle 11986. (Contributed by Jim Kingdon, 8-Nov-2021.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ ℤ)    &   (𝜑𝑁 < 𝑀)       (𝜑 → (𝐾 · 𝑀) ≠ 𝑁)
 
Theoremdvdsle 11986 The divisors of a positive integer are bounded by it. The proof does not use /. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁𝑀𝑁))
 
Theoremdvdsleabs 11987 The divisors of a nonzero integer are bounded by its absolute value. Theorem 1.1(i) in [ApostolNT] p. 14 (comparison property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀𝑁𝑀 ≤ (abs‘𝑁)))
 
Theoremdvdsleabs2 11988 Transfer divisibility to an order constraint on absolute values. (Contributed by Stefan O'Rear, 24-Sep-2014.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀𝑁 → (abs‘𝑀) ≤ (abs‘𝑁)))
 
Theoremdvdsabseq 11989 If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.)
((𝑀𝑁𝑁𝑀) → (abs‘𝑀) = (abs‘𝑁))
 
Theoremdvdseq 11990 If two nonnegative integers divide each other, they must be equal. (Contributed by Mario Carneiro, 30-May-2014.) (Proof shortened by AV, 7-Aug-2021.)
(((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀𝑁𝑁𝑀)) → 𝑀 = 𝑁)
 
Theoremdivconjdvds 11991 If a nonzero integer 𝑀 divides another integer 𝑁, the other integer 𝑁 divided by the nonzero integer 𝑀 (i.e. the divisor conjugate of 𝑁 to 𝑀) divides the other integer 𝑁. Theorem 1.1(k) in [ApostolNT] p. 14. (Contributed by AV, 7-Aug-2021.)
((𝑀𝑁𝑀 ≠ 0) → (𝑁 / 𝑀) ∥ 𝑁)
 
Theoremdvdsdivcl 11992* The complement of a divisor of 𝑁 is also a divisor of 𝑁. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
 
Theoremdvdsflip 11993* An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.)
𝐴 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}    &   𝐹 = (𝑦𝐴 ↦ (𝑁 / 𝑦))       (𝑁 ∈ ℕ → 𝐹:𝐴1-1-onto𝐴)
 
Theoremdvdsssfz1 11994* The set of divisors of a number is a subset of a finite set. (Contributed by Mario Carneiro, 22-Sep-2014.)
(𝐴 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝𝐴} ⊆ (1...𝐴))
 
Theoremdvds1 11995 The only nonnegative integer that divides 1 is 1. (Contributed by Mario Carneiro, 2-Jul-2015.)
(𝑀 ∈ ℕ0 → (𝑀 ∥ 1 ↔ 𝑀 = 1))
 
Theoremalzdvds 11996* Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.)
(𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥𝑁𝑁 = 0))
 
Theoremdvdsext 11997* Poset extensionality for division. (Contributed by Stefan O'Rear, 6-Sep-2015.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℕ0 (𝐴𝑥𝐵𝑥)))
 
Theoremfzm1ndvds 11998 No number between 1 and 𝑀 − 1 divides 𝑀. (Contributed by Mario Carneiro, 24-Jan-2015.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → ¬ 𝑀𝑁)
 
Theoremfzo0dvdseq 11999 Zero is the only one of the first 𝐴 nonnegative integers that is divisible by 𝐴. (Contributed by Stefan O'Rear, 6-Sep-2015.)
(𝐵 ∈ (0..^𝐴) → (𝐴𝐵𝐵 = 0))
 
Theoremfzocongeq 12000 Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015.)
((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ 𝐴 = 𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >