Theorem List for Intuitionistic Logic Explorer - 11901-12000 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | sumnul 11901* |
The sum of a non-convergent infinite series evaluates to the empty
set. (Contributed by Paul Chapman, 4-Nov-2007.) (Revised by Mario
Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ∅) |
| |
| Theorem | isumcl 11902* |
The sum of a converging infinite series is a complex number.
(Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro,
23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ∈ ℂ) |
| |
| Theorem | isummulc2 11903* |
An infinite sum multiplied by a constant. (Contributed by NM,
12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐵 · Σ𝑘 ∈ 𝑍 𝐴) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) |
| |
| Theorem | isummulc1 11904* |
An infinite sum multiplied by a constant. (Contributed by NM,
13-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝑍 𝐴 · 𝐵) = Σ𝑘 ∈ 𝑍 (𝐴 · 𝐵)) |
| |
| Theorem | isumdivapc 11905* |
An infinite sum divided by a constant. (Contributed by NM, 2-Jan-2006.)
(Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝑍 𝐴 / 𝐵) = Σ𝑘 ∈ 𝑍 (𝐴 / 𝐵)) |
| |
| Theorem | isumrecl 11906* |
The sum of a converging infinite real series is a real number.
(Contributed by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ∈ ℝ) |
| |
| Theorem | isumge0 11907* |
An infinite sum of nonnegative terms is nonnegative. (Contributed by
Mario Carneiro, 28-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝑍 𝐴) |
| |
| Theorem | isumadd 11908* |
Addition of infinite sums. (Contributed by Mario Carneiro,
18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 (𝐴 + 𝐵) = (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
| |
| Theorem | sumsplitdc 11909* |
Split a sum into two parts. (Contributed by Mario Carneiro,
18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → DECID 𝑘 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → DECID 𝑘 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐶, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = if(𝑘 ∈ 𝐵, 𝐶, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ 𝐵)) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
| |
| Theorem | fsump1i 11910* |
Optimized version of fsump1 11897 for making sums of a concrete number of
terms. (Contributed by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑁 = (𝐾 + 1) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝐾 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆)) & ⊢ (𝜑 → (𝑆 + 𝐵) = 𝑇) ⇒ ⊢ (𝜑 → (𝑁 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇)) |
| |
| Theorem | fsum2dlemstep 11911* |
Lemma for fsum2d 11912- induction step. (Contributed by Mario
Carneiro,
23-Apr-2014.) (Revised by Jim Kingdon, 8-Oct-2022.)
|
| ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ¬ 𝑦 ∈ 𝑥)
& ⊢ (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
& ⊢ (𝜑 → 𝑥 ∈ Fin) & ⊢ (𝜓 ↔ Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷) |
| |
| Theorem | fsum2d 11912* |
Write a double sum as a sum over a two-dimensional region. Note that
𝐵(𝑗) is a function of 𝑗.
(Contributed by Mario Carneiro,
27-Apr-2014.)
|
| ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐷) |
| |
| Theorem | fsumxp 11913* |
Combine two sums into a single sum over the cartesian product.
(Contributed by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ (𝐴 × 𝐵)𝐷) |
| |
| Theorem | fsumcnv 11914* |
Transform a region of summation by using the converse operation.
(Contributed by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ (𝑥 = 〈𝑗, 𝑘〉 → 𝐵 = 𝐷)
& ⊢ (𝑦 = 〈𝑘, 𝑗〉 → 𝐶 = 𝐷)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → Rel 𝐴)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 𝐵 = Σ𝑦 ∈ ◡ 𝐴𝐶) |
| |
| Theorem | fisumcom2 11915* |
Interchange order of summation. Note that 𝐵(𝑗) and 𝐷(𝑘)
are not necessarily constant expressions. (Contributed by Mario
Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
(Proof shortened by JJ, 2-Aug-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐷 ∈ Fin) & ⊢ (𝜑 → ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) ↔ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷))) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐸 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐸 = Σ𝑘 ∈ 𝐶 Σ𝑗 ∈ 𝐷 𝐸) |
| |
| Theorem | fsumcom 11916* |
Interchange order of summation. (Contributed by NM, 15-Nov-2005.)
(Revised by Mario Carneiro, 23-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑘 ∈ 𝐵 Σ𝑗 ∈ 𝐴 𝐶) |
| |
| Theorem | fsum0diaglem 11917* |
Lemma for fisum0diag 11918. (Contributed by Mario Carneiro,
28-Apr-2014.)
(Revised by Mario Carneiro, 8-Apr-2016.)
|
| ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 𝑘)))) |
| |
| Theorem | fisum0diag 11918* |
Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular
region 𝑀 ≤ 𝑗, 𝑀 ≤ 𝑘, 𝑗 + 𝑘 ≤ 𝑁". (Contributed by NM,
31-Dec-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
(Revised by Mario Carneiro, 8-Apr-2016.)
|
| ⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...(𝑁 − 𝑘))𝐴) |
| |
| Theorem | mptfzshft 11919* |
1-1 onto function in maps-to notation which shifts a finite set of
sequential integers. (Contributed by AV, 24-Aug-2019.)
|
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁)) |
| |
| Theorem | fsumrev 11920* |
Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised
by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝐾 − 𝑘) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝐵) |
| |
| Theorem | fsumshft 11921* |
Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.)
(Revised by Mario Carneiro, 24-Apr-2014.) (Proof shortened by AV,
8-Sep-2019.)
|
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
| |
| Theorem | fsumshftm 11922* |
Negative index shift of a finite sum. (Contributed by NM,
28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
| |
| Theorem | fisumrev2 11923* |
Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised
by Mario Carneiro, 13-Apr-2016.)
|
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
| |
| Theorem | fisum0diag2 11924* |
Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular
region 0 ≤ 𝑗, 0 ≤ 𝑘, 𝑗 + 𝑘 ≤ 𝑁". (Contributed by
Mario Carneiro, 21-Jul-2014.)
|
| ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐴)
& ⊢ (𝑥 = (𝑘 − 𝑗) → 𝐵 = 𝐶)
& ⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)𝐶) |
| |
| Theorem | fsummulc2 11925* |
A finite sum multiplied by a constant. (Contributed by NM,
12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵)) |
| |
| Theorem | fsummulc1 11926* |
A finite sum multiplied by a constant. (Contributed by NM,
13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
| |
| Theorem | fsumdivapc 11927* |
A finite sum divided by a constant. (Contributed by NM, 2-Jan-2006.)
(Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 / 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 / 𝐶)) |
| |
| Theorem | fsumneg 11928* |
Negation of a finite sum. (Contributed by Scott Fenton, 12-Jun-2013.)
(Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 -𝐵 = -Σ𝑘 ∈ 𝐴 𝐵) |
| |
| Theorem | fsumsub 11929* |
Split a finite sum over a subtraction. (Contributed by Scott Fenton,
12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 − 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 − Σ𝑘 ∈ 𝐴 𝐶)) |
| |
| Theorem | fsum2mul 11930* |
Separate the nested sum of the product 𝐶(𝑗) · 𝐷(𝑘).
(Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro,
24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 (𝐶 · 𝐷) = (Σ𝑗 ∈ 𝐴 𝐶 · Σ𝑘 ∈ 𝐵 𝐷)) |
| |
| Theorem | fsumconst 11931* |
The sum of constant terms (𝑘 is not free in 𝐵). (Contributed
by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵)) |
| |
| Theorem | fsumdifsnconst 11932* |
The sum of constant terms (𝑘 is not free in 𝐶) over an index
set excluding a singleton. (Contributed by AV, 7-Jan-2022.)
|
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ℂ) → Σ𝑘 ∈ (𝐴 ∖ {𝐵})𝐶 = (((♯‘𝐴) − 1) · 𝐶)) |
| |
| Theorem | modfsummodlem1 11933* |
Lemma for modfsummod 11935. (Contributed by Alexander van der Vekens,
1-Sep-2018.)
|
| ⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) |
| |
| Theorem | modfsummodlemstep 11934* |
Induction step for modfsummod 11935. (Contributed by Alexander van der
Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐴)
& ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁)) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) |
| |
| Theorem | modfsummod 11935* |
A finite sum modulo a positive integer equals the finite sum of their
summands modulo the positive integer, modulo the positive integer.
(Contributed by Alexander van der Vekens, 1-Sep-2018.)
|
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁)) |
| |
| Theorem | fsumge0 11936* |
If all of the terms of a finite sum are nonnegative, so is the sum.
(Contributed by NM, 26-Dec-2005.) (Revised by Mario Carneiro,
24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| |
| Theorem | fsumlessfi 11937* |
A shorter sum of nonnegative terms is no greater than a longer one.
(Contributed by NM, 26-Dec-2005.) (Revised by Jim Kingdon,
12-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵)
& ⊢ (𝜑 → 𝐶 ⊆ 𝐴)
& ⊢ (𝜑 → 𝐶 ∈ Fin) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| |
| Theorem | fsumge1 11938* |
A sum of nonnegative numbers is greater than or equal to any one of
its terms. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof
shortened by Mario Carneiro, 4-Jun-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵)
& ⊢ (𝑘 = 𝑀 → 𝐵 = 𝐶)
& ⊢ (𝜑 → 𝑀 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| |
| Theorem | fsum00 11939* |
A sum of nonnegative numbers is zero iff all terms are zero.
(Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario
Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 = 0 ↔ ∀𝑘 ∈ 𝐴 𝐵 = 0)) |
| |
| Theorem | fsumle 11940* |
If all of the terms of finite sums compare, so do the sums.
(Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro,
24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | fsumlt 11941* |
If every term in one finite sum is less than the corresponding term in
another, then the first sum is less than the second. (Contributed by
Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Jun-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 < Σ𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | fsumabs 11942* |
Generalized triangle inequality: the absolute value of a finite sum is
less than or equal to the sum of absolute values. (Contributed by NM,
9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵)) |
| |
| Theorem | telfsumo 11943* |
Sum of a telescoping series, using half-open intervals. (Contributed by
Mario Carneiro, 2-May-2016.)
|
| ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵)
& ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷)
& ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 − 𝐶) = (𝐷 − 𝐸)) |
| |
| Theorem | telfsumo2 11944* |
Sum of a telescoping series. (Contributed by Mario Carneiro,
2-May-2016.)
|
| ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵)
& ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷)
& ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
| |
| Theorem | telfsum 11945* |
Sum of a telescoping series. (Contributed by Scott Fenton,
24-Apr-2014.) (Revised by Mario Carneiro, 2-May-2016.)
|
| ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵)
& ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷)
& ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
& ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐵 − 𝐶) = (𝐷 − 𝐸)) |
| |
| Theorem | telfsum2 11946* |
Sum of a telescoping series. (Contributed by Mario Carneiro,
15-Jun-2014.) (Revised by Mario Carneiro, 2-May-2016.)
|
| ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵)
& ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷)
& ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
& ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
| |
| Theorem | fsumparts 11947* |
Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
|
| ⊢ (𝑘 = 𝑗 → (𝐴 = 𝐵 ∧ 𝑉 = 𝑊)) & ⊢ (𝑘 = (𝑗 + 1) → (𝐴 = 𝐶 ∧ 𝑉 = 𝑋)) & ⊢ (𝑘 = 𝑀 → (𝐴 = 𝐷 ∧ 𝑉 = 𝑌)) & ⊢ (𝑘 = 𝑁 → (𝐴 = 𝐸 ∧ 𝑉 = 𝑍)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑉 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋 − 𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 − 𝐵) · 𝑋))) |
| |
| Theorem | fsumrelem 11948* |
Lemma for fsumre 11949, fsumim 11950, and fsumcj 11951. (Contributed by Mario
Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐹:ℂ⟶ℂ & ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) |
| |
| Theorem | fsumre 11949* |
The real part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.)
(Revised by Mario Carneiro, 25-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (ℜ‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (ℜ‘𝐵)) |
| |
| Theorem | fsumim 11950* |
The imaginary part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.)
(Revised by Mario Carneiro, 25-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (ℑ‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (ℑ‘𝐵)) |
| |
| Theorem | fsumcj 11951* |
The complex conjugate of a sum. (Contributed by Paul Chapman,
9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (∗‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (∗‘𝐵)) |
| |
| Theorem | iserabs 11952* |
Generalized triangle inequality: the absolute value of an infinite sum
is less than or equal to the sum of absolute values. (Contributed by
Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
& ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (abs‘𝐴) ≤ 𝐵) |
| |
| Theorem | cvgcmpub 11953* |
An upper bound for the limit of a real infinite series. This theorem
can also be used to compare two infinite series. (Contributed by Mario
Carneiro, 24-Mar-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
& ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
| |
| Theorem | fsumiun 11954* |
Sum over a disjoint indexed union. (Contributed by Mario Carneiro,
1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝐶 = Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶) |
| |
| Theorem | hashiun 11955* |
The cardinality of a disjoint indexed union. (Contributed by Mario
Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ𝑥 ∈ 𝐴 (♯‘𝐵)) |
| |
| Theorem | hash2iun 11956* |
The cardinality of a nested disjoint indexed union. (Contributed by AV,
9-Jan-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 (♯‘𝐶)) |
| |
| Theorem | hash2iun1dif1 11957* |
The cardinality of a nested disjoint indexed union. (Contributed by AV,
9-Jan-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ 𝐵 = (𝐴 ∖ {𝑥})
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (♯‘𝐶) = 1) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
| |
| Theorem | hashrabrex 11958* |
The number of elements in a class abstraction with a restricted
existential quantification. (Contributed by Alexander van der Vekens,
29-Jul-2018.)
|
| ⊢ (𝜑 → 𝑌 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → {𝑥 ∈ 𝑋 ∣ 𝜓} ∈ Fin) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ 𝜓}) ⇒ ⊢ (𝜑 → (♯‘{𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑌 𝜓}) = Σ𝑦 ∈ 𝑌 (♯‘{𝑥 ∈ 𝑋 ∣ 𝜓})) |
| |
| Theorem | hashuni 11959* |
The cardinality of a disjoint union. (Contributed by Mario Carneiro,
24-Jan-2015.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) ⇒ ⊢ (𝜑 → (♯‘∪ 𝐴)
= Σ𝑥 ∈ 𝐴 (♯‘𝑥)) |
| |
| 4.9.3 The binomial theorem
|
| |
| Theorem | binomlem 11960* |
Lemma for binom 11961 (binomial theorem). Inductive step.
(Contributed by
NM, 6-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜓 → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + 𝐵)↑(𝑁 + 1)) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑𝑘)))) |
| |
| Theorem | binom 11961* |
The binomial theorem: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to
𝑁 of (𝑁C𝑘) · ((𝐴↑𝑘) · (𝐵↑(𝑁 − 𝑘)). Theorem
15-2.8 of [Gleason] p. 296. This part
of the proof sets up the
induction and does the base case, with the bulk of the work (the
induction step) in binomlem 11960. This is Metamath 100 proof #44.
(Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro,
24-Apr-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) |
| |
| Theorem | binom1p 11962* |
Special case of the binomial theorem for (1 + 𝐴)↑𝑁.
(Contributed by Paul Chapman, 10-May-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 +
𝐴)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴↑𝑘))) |
| |
| Theorem | binom11 11963* |
Special case of the binomial theorem for 2↑𝑁. (Contributed by
Mario Carneiro, 13-Mar-2014.)
|
| ⊢ (𝑁 ∈ ℕ0 →
(2↑𝑁) = Σ𝑘 ∈ (0...𝑁)(𝑁C𝑘)) |
| |
| Theorem | binom1dif 11964* |
A summation for the difference between ((𝐴 + 1)↑𝑁) and
(𝐴↑𝑁). (Contributed by Scott Fenton,
9-Apr-2014.) (Revised by
Mario Carneiro, 22-May-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) →
(((𝐴 + 1)↑𝑁) − (𝐴↑𝑁)) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴↑𝑘))) |
| |
| Theorem | bcxmaslem1 11965 |
Lemma for bcxmas 11966. (Contributed by Paul Chapman,
18-May-2007.)
|
| ⊢ (𝐴 = 𝐵 → ((𝑁 + 𝐴)C𝐴) = ((𝑁 + 𝐵)C𝐵)) |
| |
| Theorem | bcxmas 11966* |
Parallel summation (Christmas Stocking) theorem for Pascal's Triangle.
(Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro,
24-Apr-2014.)
|
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)) |
| |
| 4.9.4 Infinite sums (cont.)
|
| |
| Theorem | isumshft 11967* |
Index shift of an infinite sum. (Contributed by Paul Chapman,
31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 =
(ℤ≥‘(𝑀 + 𝐾)) & ⊢ (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵)
& ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑊) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝑊 𝐴 = Σ𝑘 ∈ 𝑍 𝐵) |
| |
| Theorem | isumsplit 11968* |
Split off the first 𝑁 terms of an infinite sum.
(Contributed by
Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 21-Oct-2022.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 =
(ℤ≥‘𝑁)
& ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ 𝑊 𝐴)) |
| |
| Theorem | isum1p 11969* |
The infinite sum of a converging infinite series equals the first term
plus the infinite sum of the rest of it. (Contributed by NM,
2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
| |
| Theorem | isumnn0nn 11970* |
Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed
by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝑘 = 0 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = (𝐵 + Σ𝑘 ∈ ℕ 𝐴)) |
| |
| Theorem | isumrpcl 11971* |
The infinite sum of positive reals is positive. (Contributed by Paul
Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 =
(ℤ≥‘𝑁)
& ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈
ℝ+) |
| |
| Theorem | isumle 11972* |
Comparison of two infinite sums. (Contributed by Paul Chapman,
13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ≤ 𝐵)
& ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
| |
| Theorem | isumlessdc 11973* |
A finite sum of nonnegative numbers is less than or equal to its limit.
(Contributed by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 DECID 𝑘 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵)
& ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
| |
| 4.9.5 Miscellaneous converging and diverging
sequences
|
| |
| Theorem | divcnv 11974* |
The sequence of reciprocals of positive integers, multiplied by the
factor 𝐴, converges to zero. (Contributed by
NM, 6-Feb-2008.)
(Revised by Jim Kingdon, 22-Oct-2022.)
|
| ⊢ (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0) |
| |
| 4.9.6 Arithmetic series
|
| |
| Theorem | arisum 11975* |
Arithmetic series sum of the first 𝑁 positive integers. This is
Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof
shortened by Mario Carneiro, 22-May-2014.)
|
| ⊢ (𝑁 ∈ ℕ0 →
Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2)) |
| |
| Theorem | arisum2 11976* |
Arithmetic series sum of the first 𝑁 nonnegative integers.
(Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV,
2-Aug-2021.)
|
| ⊢ (𝑁 ∈ ℕ0 →
Σ𝑘 ∈
(0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2)) |
| |
| Theorem | trireciplem 11977 |
Lemma for trirecip 11978. Show that the sum converges. (Contributed
by
Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro,
22-May-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) ⇒ ⊢ seq1( + , 𝐹) ⇝ 1 |
| |
| Theorem | trirecip 11978 |
The sum of the reciprocals of the triangle numbers converge to two.
This is Metamath 100 proof #42. (Contributed by Scott Fenton,
23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
|
| ⊢ Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2 |
| |
| 4.9.7 Geometric series
|
| |
| Theorem | expcnvap0 11979* |
A sequence of powers of a complex number 𝐴 with absolute value
smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.)
(Revised by Jim Kingdon, 23-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
| |
| Theorem | expcnvre 11980* |
A sequence of powers of a nonnegative real number less than one
converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
| |
| Theorem | expcnv 11981* |
A sequence of powers of a complex number 𝐴 with absolute value
smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.)
(Revised by Jim Kingdon, 28-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) <
1) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
| |
| Theorem | explecnv 11982* |
A sequence of terms converges to zero when it is less than powers of a
number 𝐴 whose absolute value is smaller than
1. (Contributed by
NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ≤ (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 0) |
| |
| Theorem | geosergap 11983* |
The value of the finite geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1) +...
+ 𝐴↑(𝑁 − 1). (Contributed by Mario
Carneiro, 2-May-2016.)
(Revised by Jim Kingdon, 24-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 1) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) = (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴))) |
| |
| Theorem | geoserap 11984* |
The value of the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +...
+ 𝐴↑(𝑁 − 1). This is Metamath 100
proof #66. (Contributed by
NM, 12-May-2006.) (Revised by Jim Kingdon, 24-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 1) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴))) |
| |
| Theorem | pwm1geoserap1 11985* |
The n-th power of a number decreased by 1 expressed by the finite
geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1).
(Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon,
24-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 # 1) ⇒ ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
| |
| Theorem | absltap 11986 |
Less-than of absolute value implies apartness. (Contributed by Jim
Kingdon, 29-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐴) < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 # 𝐵) |
| |
| Theorem | absgtap 11987 |
Greater-than of absolute value implies apartness. (Contributed by Jim
Kingdon, 29-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 < (abs‘𝐴)) ⇒ ⊢ (𝜑 → 𝐴 # 𝐵) |
| |
| Theorem | geolim 11988* |
The partial sums in the infinite series 1 + 𝐴↑1 + 𝐴↑2...
converge to (1 / (1 − 𝐴)). (Contributed by NM,
15-May-2006.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − 𝐴))) |
| |
| Theorem | geolim2 11989* |
The partial sums in the geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1)...
converge to ((𝐴↑𝑀) / (1 − 𝐴)). (Contributed by NM,
6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴↑𝑀) / (1 − 𝐴))) |
| |
| Theorem | georeclim 11990* |
The limit of a geometric series of reciprocals. (Contributed by Paul
Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 1 < (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) ⇒ ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
| |
| Theorem | geo2sum 11991* |
The value of the finite geometric series 2↑-1 + 2↑-2
+...
+ 2↑-𝑁, multiplied by a constant.
(Contributed by Mario
Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁)))) |
| |
| Theorem | geo2sum2 11992* |
The value of the finite geometric series 1 + 2 + 4 + 8
+...
+ 2↑(𝑁 − 1). (Contributed by Mario
Carneiro, 7-Sep-2016.)
|
| ⊢ (𝑁 ∈ ℕ0 →
Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1)) |
| |
| Theorem | geo2lim 11993* |
The value of the infinite geometric series
2↑-1 + 2↑-2 +... , multiplied by a
constant. (Contributed
by Mario Carneiro, 15-Jun-2014.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴) |
| |
| Theorem | geoisum 11994* |
The infinite sum of 1 + 𝐴↑1 + 𝐴↑2... is (1 /
(1 − 𝐴)).
(Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ0
(𝐴↑𝑘) = (1 / (1 − 𝐴))) |
| |
| Theorem | geoisumr 11995* |
The infinite sum of reciprocals
1 + (1 / 𝐴)↑1 + (1 / 𝐴)↑2... is 𝐴 / (𝐴 − 1).
(Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 1 <
(abs‘𝐴)) →
Σ𝑘 ∈
ℕ0 ((1 / 𝐴)↑𝑘) = (𝐴 / (𝐴 − 1))) |
| |
| Theorem | geoisum1 11996* |
The infinite sum of 𝐴↑1 + 𝐴↑2... is (𝐴 / (1 − 𝐴)).
(Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴↑𝑘) = (𝐴 / (1 − 𝐴))) |
| |
| Theorem | geoisum1c 11997* |
The infinite sum of 𝐴 · (𝑅↑1) + 𝐴 · (𝑅↑2)... is
(𝐴
· 𝑅) / (1 −
𝑅). (Contributed by
NM, 2-Nov-2007.) (Revised
by Mario Carneiro, 26-Apr-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅))) |
| |
| Theorem | 0.999... 11998 |
The recurring decimal 0.999..., which is defined as the infinite sum 0.9 +
0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9
/ 10↑3
+ ..., is exactly equal to 1. (Contributed by NM,
2-Nov-2007.)
(Revised by AV, 8-Sep-2021.)
|
| ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
| |
| Theorem | geoihalfsum 11999 |
Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... =
1. Uses geoisum1 11996. This is a representation of .111... in
binary with
an infinite number of 1's. Theorem 0.999... 11998 proves a similar claim for
.999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.)
(Proof shortened by AV, 9-Jul-2022.)
|
| ⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 |
| |
| 4.9.8 Ratio test for infinite series
convergence
|
| |
| Theorem | cvgratnnlembern 12000 |
Lemma for cvgratnn 12008. Upper bound for a geometric progression of
positive ratio less than one. (Contributed by Jim Kingdon,
24-Nov-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ (𝜑 → 𝑀 ∈ ℕ)
⇒ ⊢ (𝜑 → (𝐴↑𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀)) |