Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zmulcld | GIF version |
Description: Closure of multiplication of integers. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
zred.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
zaddcld.1 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
Ref | Expression |
---|---|
zmulcld | ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | zaddcld.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
3 | zmulcl 9279 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 (class class class)co 5865 · cmul 7791 ℤcz 9226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-sub 8104 df-neg 8105 df-inn 8893 df-n0 9150 df-z 9227 |
This theorem is referenced by: qapne 9612 qtri3or 10213 2tnp1ge0ge0 10271 flhalf 10272 intfracq 10290 zmodcl 10314 modqmul1 10347 addmodlteq 10368 sqoddm1div8 10643 eirraplem 11752 dvdscmulr 11795 dvdsmulcr 11796 modmulconst 11798 dvds2ln 11799 dvdsmod 11835 even2n 11846 2tp1odd 11856 ltoddhalfle 11865 m1expo 11872 m1exp1 11873 divalglemqt 11891 modremain 11901 flodddiv4 11906 gcdaddm 11952 gcdmultipled 11961 bezoutlemnewy 11964 bezoutlemstep 11965 bezoutlembi 11973 mulgcd 11984 dvdsmulgcd 11993 bezoutr 12000 lcmval 12030 lcmcllem 12034 lcmgcdlem 12044 mulgcddvds 12061 rpmulgcd2 12062 divgcdcoprm0 12068 cncongr1 12070 cncongr2 12071 prmind2 12087 exprmfct 12105 2sqpwodd 12143 hashdvds 12188 phimullem 12192 eulerthlem1 12194 eulerthlema 12197 eulerthlemh 12198 eulerthlemth 12199 prmdiv 12202 prmdiveq 12203 pythagtriplem2 12233 pythagtrip 12250 pcpremul 12260 pcqmul 12270 pcaddlem 12305 prmpwdvds 12320 4sqlem5 12347 4sqlem10 12352 oddennn 12360 mulgass 12880 mulgmodid 12882 lgsval 13976 lgsdir2lem5 14004 lgsdirprm 14006 lgsdir 14007 lgsdilem2 14008 lgsdi 14009 lgsne0 14010 2sqlem3 14024 2sqlem4 14025 |
Copyright terms: Public domain | W3C validator |