Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zmulcld | GIF version |
Description: Closure of multiplication of integers. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
zred.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
zaddcld.1 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
Ref | Expression |
---|---|
zmulcld | ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | zaddcld.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
3 | zmulcl 9244 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 (class class class)co 5842 · cmul 7758 ℤcz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 |
This theorem is referenced by: qapne 9577 qtri3or 10178 2tnp1ge0ge0 10236 flhalf 10237 intfracq 10255 zmodcl 10279 modqmul1 10312 addmodlteq 10333 sqoddm1div8 10608 eirraplem 11717 dvdscmulr 11760 dvdsmulcr 11761 modmulconst 11763 dvds2ln 11764 dvdsmod 11800 even2n 11811 2tp1odd 11821 ltoddhalfle 11830 m1expo 11837 m1exp1 11838 divalglemqt 11856 modremain 11866 flodddiv4 11871 gcdaddm 11917 gcdmultipled 11926 bezoutlemnewy 11929 bezoutlemstep 11930 bezoutlembi 11938 mulgcd 11949 dvdsmulgcd 11958 bezoutr 11965 lcmval 11995 lcmcllem 11999 lcmgcdlem 12009 mulgcddvds 12026 rpmulgcd2 12027 divgcdcoprm0 12033 cncongr1 12035 cncongr2 12036 prmind2 12052 exprmfct 12070 2sqpwodd 12108 hashdvds 12153 phimullem 12157 eulerthlem1 12159 eulerthlema 12162 eulerthlemh 12163 eulerthlemth 12164 prmdiv 12167 prmdiveq 12168 pythagtriplem2 12198 pythagtrip 12215 pcpremul 12225 pcqmul 12235 pcaddlem 12270 prmpwdvds 12285 4sqlem5 12312 4sqlem10 12317 oddennn 12325 lgsval 13545 lgsdir2lem5 13573 lgsdirprm 13575 lgsdir 13576 lgsdilem2 13577 lgsdi 13578 lgsne0 13579 2sqlem3 13593 2sqlem4 13594 |
Copyright terms: Public domain | W3C validator |