ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zmulcld GIF version

Theorem zmulcld 9083
Description: Closure of multiplication of integers. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
zred.1 (𝜑𝐴 ∈ ℤ)
zaddcld.1 (𝜑𝐵 ∈ ℤ)
Assertion
Ref Expression
zmulcld (𝜑 → (𝐴 · 𝐵) ∈ ℤ)

Proof of Theorem zmulcld
StepHypRef Expression
1 zred.1 . 2 (𝜑𝐴 ∈ ℤ)
2 zaddcld.1 . 2 (𝜑𝐵 ∈ ℤ)
3 zmulcl 9011 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ)
41, 2, 3syl2anc 406 1 (𝜑 → (𝐴 · 𝐵) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1463  (class class class)co 5728   · cmul 7552  cz 8958
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-sub 7858  df-neg 7859  df-inn 8631  df-n0 8882  df-z 8959
This theorem is referenced by:  qapne  9333  qtri3or  9913  2tnp1ge0ge0  9967  flhalf  9968  intfracq  9986  zmodcl  10010  modqmul1  10043  addmodlteq  10064  sqoddm1div8  10337  eirraplem  11331  dvdscmulr  11370  dvdsmulcr  11371  modmulconst  11373  dvds2ln  11374  dvdsmod  11408  even2n  11419  2tp1odd  11429  ltoddhalfle  11438  m1expo  11445  m1exp1  11446  divalglemqt  11464  modremain  11474  flodddiv4  11479  gcdaddm  11520  bezoutlemnewy  11530  bezoutlemstep  11531  bezoutlembi  11539  mulgcd  11550  dvdsmulgcd  11559  bezoutr  11566  lcmval  11590  lcmcllem  11594  lcmgcdlem  11604  mulgcddvds  11621  rpmulgcd2  11622  divgcdcoprm0  11628  cncongr1  11630  cncongr2  11631  prmind2  11647  exprmfct  11664  2sqpwodd  11699  hashdvds  11742  phimullem  11746  oddennn  11750
  Copyright terms: Public domain W3C validator