![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recnnre | GIF version |
Description: Embedding the reciprocal of a natural number into ℝ. (Contributed by Jim Kingdon, 15-Jul-2021.) |
Ref | Expression |
---|---|
recnnre | ⊢ (𝑁 ∈ N → ⟨[⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recnnpr 7550 | . . . . . 6 ⊢ (𝑁 ∈ N → ⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P) | |
2 | 1pr 7556 | . . . . . 6 ⊢ 1P ∈ P | |
3 | addclpr 7539 | . . . . . 6 ⊢ ((⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P ∧ 1P ∈ P) → (⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P) ∈ P) | |
4 | 1, 2, 3 | sylancl 413 | . . . . 5 ⊢ (𝑁 ∈ N → (⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P) ∈ P) |
5 | opelxpi 4660 | . . . . 5 ⊢ (((⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1P ∈ P) → ⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P)) | |
6 | 4, 2, 5 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ N → ⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P)) |
7 | enrex 7739 | . . . . 5 ⊢ ~R ∈ V | |
8 | 7 | ecelqsi 6592 | . . . 4 ⊢ (⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P) → [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R )) |
9 | 6, 8 | syl 14 | . . 3 ⊢ (𝑁 ∈ N → [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R )) |
10 | df-nr 7729 | . . 3 ⊢ R = ((P × P) / ~R ) | |
11 | 9, 10 | eleqtrrdi 2271 | . 2 ⊢ (𝑁 ∈ N → [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ R) |
12 | opelreal 7829 | . 2 ⊢ (⟨[⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ ↔ [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ R) | |
13 | 11, 12 | sylibr 134 | 1 ⊢ (𝑁 ∈ N → ⟨[⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2148 {cab 2163 ⟨cop 3597 class class class wbr 4005 × cxp 4626 ‘cfv 5218 (class class class)co 5878 1oc1o 6413 [cec 6536 / cqs 6537 Ncnpi 7274 ~Q ceq 7281 *Qcrq 7286 <Q cltq 7287 Pcnp 7293 1Pc1p 7294 +P cpp 7295 ~R cer 7298 Rcnr 7299 0Rc0r 7300 ℝcr 7813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-irdg 6374 df-1o 6420 df-2o 6421 df-oadd 6424 df-omul 6425 df-er 6538 df-ec 6540 df-qs 6544 df-ni 7306 df-pli 7307 df-mi 7308 df-lti 7309 df-plpq 7346 df-mpq 7347 df-enq 7349 df-nqqs 7350 df-plqqs 7351 df-mqqs 7352 df-1nqqs 7353 df-rq 7354 df-ltnqqs 7355 df-enq0 7426 df-nq0 7427 df-0nq0 7428 df-plq0 7429 df-mq0 7430 df-inp 7468 df-i1p 7469 df-iplp 7470 df-enr 7728 df-nr 7729 df-0r 7733 df-r 7824 |
This theorem is referenced by: recriota 7892 |
Copyright terms: Public domain | W3C validator |