![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pitore | GIF version |
Description: Embedding from N to ℝ. Similar to pitonn 7844 but separate in the sense that we have not proved nnssre 8919 yet. (Contributed by Jim Kingdon, 15-Jul-2021.) |
Ref | Expression |
---|---|
pitore | ⊢ (𝑁 ∈ N → 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnprlu 7549 | . . . . . 6 ⊢ (𝑁 ∈ N → 〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ∈ P) | |
2 | 1pr 7550 | . . . . . 6 ⊢ 1P ∈ P | |
3 | addclpr 7533 | . . . . . 6 ⊢ ((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ∈ P ∧ 1P ∈ P) → (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P) ∈ P) | |
4 | 1, 2, 3 | sylancl 413 | . . . . 5 ⊢ (𝑁 ∈ N → (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P) ∈ P) |
5 | opelxpi 4657 | . . . . 5 ⊢ (((〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P) ∈ P ∧ 1P ∈ P) → 〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉 ∈ (P × P)) | |
6 | 4, 2, 5 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ N → 〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉 ∈ (P × P)) |
7 | enrex 7733 | . . . . 5 ⊢ ~R ∈ V | |
8 | 7 | ecelqsi 6586 | . . . 4 ⊢ (〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉 ∈ (P × P) → [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R ∈ ((P × P) / ~R )) |
9 | 6, 8 | syl 14 | . . 3 ⊢ (𝑁 ∈ N → [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R ∈ ((P × P) / ~R )) |
10 | df-nr 7723 | . . 3 ⊢ R = ((P × P) / ~R ) | |
11 | 9, 10 | eleqtrrdi 2271 | . 2 ⊢ (𝑁 ∈ N → [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R ∈ R) |
12 | opelreal 7823 | . 2 ⊢ (〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 ∈ ℝ ↔ [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R ∈ R) | |
13 | 11, 12 | sylibr 134 | 1 ⊢ (𝑁 ∈ N → 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2148 {cab 2163 〈cop 3595 class class class wbr 4002 × cxp 4623 (class class class)co 5872 1oc1o 6407 [cec 6530 / cqs 6531 Ncnpi 7268 ~Q ceq 7275 <Q cltq 7281 Pcnp 7287 1Pc1p 7288 +P cpp 7289 ~R cer 7292 Rcnr 7293 0Rc0r 7294 ℝcr 7807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4117 ax-sep 4120 ax-nul 4128 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 ax-iinf 4586 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4003 df-opab 4064 df-mpt 4065 df-tr 4101 df-eprel 4288 df-id 4292 df-po 4295 df-iso 4296 df-iord 4365 df-on 4367 df-suc 4370 df-iom 4589 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-iota 5177 df-fun 5217 df-fn 5218 df-f 5219 df-f1 5220 df-fo 5221 df-f1o 5222 df-fv 5223 df-ov 5875 df-oprab 5876 df-mpo 5877 df-1st 6138 df-2nd 6139 df-recs 6303 df-irdg 6368 df-1o 6414 df-2o 6415 df-oadd 6418 df-omul 6419 df-er 6532 df-ec 6534 df-qs 6538 df-ni 7300 df-pli 7301 df-mi 7302 df-lti 7303 df-plpq 7340 df-mpq 7341 df-enq 7343 df-nqqs 7344 df-plqqs 7345 df-mqqs 7346 df-1nqqs 7347 df-rq 7348 df-ltnqqs 7349 df-enq0 7420 df-nq0 7421 df-0nq0 7422 df-plq0 7423 df-mq0 7424 df-inp 7462 df-i1p 7463 df-iplp 7464 df-enr 7722 df-nr 7723 df-0r 7727 df-r 7818 |
This theorem is referenced by: recriota 7886 |
Copyright terms: Public domain | W3C validator |