ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  georeclim GIF version

Theorem georeclim 11476
Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
georeclim.1 (𝜑𝐴 ∈ ℂ)
georeclim.2 (𝜑 → 1 < (abs‘𝐴))
georeclim.3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
Assertion
Ref Expression
georeclim (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem georeclim
StepHypRef Expression
1 georeclim.1 . . . 4 (𝜑𝐴 ∈ ℂ)
21abscld 11145 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ)
3 0red 7921 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
4 1red 7935 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
5 0lt1 8046 . . . . . . . 8 0 < 1
65a1i 9 . . . . . . 7 (𝜑 → 0 < 1)
7 georeclim.2 . . . . . . 7 (𝜑 → 1 < (abs‘𝐴))
83, 4, 2, 6, 7lttrd 8045 . . . . . 6 (𝜑 → 0 < (abs‘𝐴))
92, 8gt0ap0d 8548 . . . . 5 (𝜑 → (abs‘𝐴) # 0)
10 abs00ap 11026 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))
111, 10syl 14 . . . . 5 (𝜑 → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))
129, 11mpbid 146 . . . 4 (𝜑𝐴 # 0)
131, 12recclapd 8698 . . 3 (𝜑 → (1 / 𝐴) ∈ ℂ)
14 1cnd 7936 . . . . . 6 (𝜑 → 1 ∈ ℂ)
1514, 1, 12absdivapd 11159 . . . . 5 (𝜑 → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴)))
16 abs1 11036 . . . . . 6 (abs‘1) = 1
1716oveq1i 5863 . . . . 5 ((abs‘1) / (abs‘𝐴)) = (1 / (abs‘𝐴))
1815, 17eqtrdi 2219 . . . 4 (𝜑 → (abs‘(1 / 𝐴)) = (1 / (abs‘𝐴)))
192, 8elrpd 9650 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ+)
2019recgt1d 9668 . . . . 5 (𝜑 → (1 < (abs‘𝐴) ↔ (1 / (abs‘𝐴)) < 1))
217, 20mpbid 146 . . . 4 (𝜑 → (1 / (abs‘𝐴)) < 1)
2218, 21eqbrtrd 4011 . . 3 (𝜑 → (abs‘(1 / 𝐴)) < 1)
23 georeclim.3 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
2413, 22, 23geolim 11474 . 2 (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − (1 / 𝐴))))
251, 14, 1, 12divsubdirapd 8747 . . . . 5 (𝜑 → ((𝐴 − 1) / 𝐴) = ((𝐴 / 𝐴) − (1 / 𝐴)))
261, 12dividapd 8703 . . . . . 6 (𝜑 → (𝐴 / 𝐴) = 1)
2726oveq1d 5868 . . . . 5 (𝜑 → ((𝐴 / 𝐴) − (1 / 𝐴)) = (1 − (1 / 𝐴)))
2825, 27eqtrd 2203 . . . 4 (𝜑 → ((𝐴 − 1) / 𝐴) = (1 − (1 / 𝐴)))
2928oveq2d 5869 . . 3 (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (1 / (1 − (1 / 𝐴))))
30 ax-1cn 7867 . . . . 5 1 ∈ ℂ
31 subcl 8118 . . . . 5 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
321, 30, 31sylancl 411 . . . 4 (𝜑 → (𝐴 − 1) ∈ ℂ)
334, 6elrpd 9650 . . . . . 6 (𝜑 → 1 ∈ ℝ+)
341, 33, 7absgtap 11473 . . . . 5 (𝜑𝐴 # 1)
351, 14, 34subap0d 8563 . . . 4 (𝜑 → (𝐴 − 1) # 0)
3632, 1, 35, 12recdivapd 8724 . . 3 (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (𝐴 / (𝐴 − 1)))
3729, 36eqtr3d 2205 . 2 (𝜑 → (1 / (1 − (1 / 𝐴))) = (𝐴 / (𝐴 − 1)))
3824, 37breqtrd 4015 1 (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  0cc0 7774  1c1 7775   + caddc 7777   < clt 7954  cmin 8090   # cap 8500   / cdiv 8589  0cn0 9135  seqcseq 10401  cexp 10475  abscabs 10961  cli 11241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317
This theorem is referenced by:  geoisumr  11481  ege2le3  11634  eftlub  11653
  Copyright terms: Public domain W3C validator