| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > georeclim | GIF version | ||
| Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| Ref | Expression |
|---|---|
| georeclim.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| georeclim.2 | ⊢ (𝜑 → 1 < (abs‘𝐴)) |
| georeclim.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) |
| Ref | Expression |
|---|---|
| georeclim | ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | georeclim.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | 1 | abscld 11363 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |
| 3 | 0red 8044 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 4 | 1red 8058 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 5 | 0lt1 8170 | . . . . . . . 8 ⊢ 0 < 1 | |
| 6 | 5 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 0 < 1) |
| 7 | georeclim.2 | . . . . . . 7 ⊢ (𝜑 → 1 < (abs‘𝐴)) | |
| 8 | 3, 4, 2, 6, 7 | lttrd 8169 | . . . . . 6 ⊢ (𝜑 → 0 < (abs‘𝐴)) |
| 9 | 2, 8 | gt0ap0d 8673 | . . . . 5 ⊢ (𝜑 → (abs‘𝐴) # 0) |
| 10 | abs00ap 11244 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0)) | |
| 11 | 1, 10 | syl 14 | . . . . 5 ⊢ (𝜑 → ((abs‘𝐴) # 0 ↔ 𝐴 # 0)) |
| 12 | 9, 11 | mpbid 147 | . . . 4 ⊢ (𝜑 → 𝐴 # 0) |
| 13 | 1, 12 | recclapd 8825 | . . 3 ⊢ (𝜑 → (1 / 𝐴) ∈ ℂ) |
| 14 | 1cnd 8059 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 15 | 14, 1, 12 | absdivapd 11377 | . . . . 5 ⊢ (𝜑 → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴))) |
| 16 | abs1 11254 | . . . . . 6 ⊢ (abs‘1) = 1 | |
| 17 | 16 | oveq1i 5935 | . . . . 5 ⊢ ((abs‘1) / (abs‘𝐴)) = (1 / (abs‘𝐴)) |
| 18 | 15, 17 | eqtrdi 2245 | . . . 4 ⊢ (𝜑 → (abs‘(1 / 𝐴)) = (1 / (abs‘𝐴))) |
| 19 | 2, 8 | elrpd 9785 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ+) |
| 20 | 19 | recgt1d 9803 | . . . . 5 ⊢ (𝜑 → (1 < (abs‘𝐴) ↔ (1 / (abs‘𝐴)) < 1)) |
| 21 | 7, 20 | mpbid 147 | . . . 4 ⊢ (𝜑 → (1 / (abs‘𝐴)) < 1) |
| 22 | 18, 21 | eqbrtrd 4056 | . . 3 ⊢ (𝜑 → (abs‘(1 / 𝐴)) < 1) |
| 23 | georeclim.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) | |
| 24 | 13, 22, 23 | geolim 11693 | . 2 ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − (1 / 𝐴)))) |
| 25 | 1, 14, 1, 12 | divsubdirapd 8874 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 1) / 𝐴) = ((𝐴 / 𝐴) − (1 / 𝐴))) |
| 26 | 1, 12 | dividapd 8830 | . . . . . 6 ⊢ (𝜑 → (𝐴 / 𝐴) = 1) |
| 27 | 26 | oveq1d 5940 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 𝐴) − (1 / 𝐴)) = (1 − (1 / 𝐴))) |
| 28 | 25, 27 | eqtrd 2229 | . . . 4 ⊢ (𝜑 → ((𝐴 − 1) / 𝐴) = (1 − (1 / 𝐴))) |
| 29 | 28 | oveq2d 5941 | . . 3 ⊢ (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (1 / (1 − (1 / 𝐴)))) |
| 30 | ax-1cn 7989 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 31 | subcl 8242 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ) | |
| 32 | 1, 30, 31 | sylancl 413 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ∈ ℂ) |
| 33 | 4, 6 | elrpd 9785 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℝ+) |
| 34 | 1, 33, 7 | absgtap 11692 | . . . . 5 ⊢ (𝜑 → 𝐴 # 1) |
| 35 | 1, 14, 34 | subap0d 8688 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) # 0) |
| 36 | 32, 1, 35, 12 | recdivapd 8851 | . . 3 ⊢ (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (𝐴 / (𝐴 − 1))) |
| 37 | 29, 36 | eqtr3d 2231 | . 2 ⊢ (𝜑 → (1 / (1 − (1 / 𝐴))) = (𝐴 / (𝐴 − 1))) |
| 38 | 24, 37 | breqtrd 4060 | 1 ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ℂcc 7894 0cc0 7896 1c1 7897 + caddc 7899 < clt 8078 − cmin 8214 # cap 8625 / cdiv 8716 ℕ0cn0 9266 seqcseq 10556 ↑cexp 10647 abscabs 11179 ⇝ cli 11460 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-ihash 10885 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-sumdc 11536 |
| This theorem is referenced by: geoisumr 11700 ege2le3 11853 eftlub 11872 |
| Copyright terms: Public domain | W3C validator |