ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  georeclim GIF version

Theorem georeclim 11314
Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
georeclim.1 (𝜑𝐴 ∈ ℂ)
georeclim.2 (𝜑 → 1 < (abs‘𝐴))
georeclim.3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
Assertion
Ref Expression
georeclim (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem georeclim
StepHypRef Expression
1 georeclim.1 . . . 4 (𝜑𝐴 ∈ ℂ)
21abscld 10985 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ)
3 0red 7791 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
4 1red 7805 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
5 0lt1 7913 . . . . . . . 8 0 < 1
65a1i 9 . . . . . . 7 (𝜑 → 0 < 1)
7 georeclim.2 . . . . . . 7 (𝜑 → 1 < (abs‘𝐴))
83, 4, 2, 6, 7lttrd 7912 . . . . . 6 (𝜑 → 0 < (abs‘𝐴))
92, 8gt0ap0d 8415 . . . . 5 (𝜑 → (abs‘𝐴) # 0)
10 abs00ap 10866 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))
111, 10syl 14 . . . . 5 (𝜑 → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))
129, 11mpbid 146 . . . 4 (𝜑𝐴 # 0)
131, 12recclapd 8565 . . 3 (𝜑 → (1 / 𝐴) ∈ ℂ)
14 1cnd 7806 . . . . . 6 (𝜑 → 1 ∈ ℂ)
1514, 1, 12absdivapd 10999 . . . . 5 (𝜑 → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴)))
16 abs1 10876 . . . . . 6 (abs‘1) = 1
1716oveq1i 5792 . . . . 5 ((abs‘1) / (abs‘𝐴)) = (1 / (abs‘𝐴))
1815, 17eqtrdi 2189 . . . 4 (𝜑 → (abs‘(1 / 𝐴)) = (1 / (abs‘𝐴)))
192, 8elrpd 9510 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ+)
2019recgt1d 9528 . . . . 5 (𝜑 → (1 < (abs‘𝐴) ↔ (1 / (abs‘𝐴)) < 1))
217, 20mpbid 146 . . . 4 (𝜑 → (1 / (abs‘𝐴)) < 1)
2218, 21eqbrtrd 3958 . . 3 (𝜑 → (abs‘(1 / 𝐴)) < 1)
23 georeclim.3 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
2413, 22, 23geolim 11312 . 2 (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − (1 / 𝐴))))
251, 14, 1, 12divsubdirapd 8614 . . . . 5 (𝜑 → ((𝐴 − 1) / 𝐴) = ((𝐴 / 𝐴) − (1 / 𝐴)))
261, 12dividapd 8570 . . . . . 6 (𝜑 → (𝐴 / 𝐴) = 1)
2726oveq1d 5797 . . . . 5 (𝜑 → ((𝐴 / 𝐴) − (1 / 𝐴)) = (1 − (1 / 𝐴)))
2825, 27eqtrd 2173 . . . 4 (𝜑 → ((𝐴 − 1) / 𝐴) = (1 − (1 / 𝐴)))
2928oveq2d 5798 . . 3 (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (1 / (1 − (1 / 𝐴))))
30 ax-1cn 7737 . . . . 5 1 ∈ ℂ
31 subcl 7985 . . . . 5 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
321, 30, 31sylancl 410 . . . 4 (𝜑 → (𝐴 − 1) ∈ ℂ)
334, 6elrpd 9510 . . . . . 6 (𝜑 → 1 ∈ ℝ+)
341, 33, 7absgtap 11311 . . . . 5 (𝜑𝐴 # 1)
351, 14, 34subap0d 8430 . . . 4 (𝜑 → (𝐴 − 1) # 0)
3632, 1, 35, 12recdivapd 8591 . . 3 (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (𝐴 / (𝐴 − 1)))
3729, 36eqtr3d 2175 . 2 (𝜑 → (1 / (1 − (1 / 𝐴))) = (𝐴 / (𝐴 − 1)))
3824, 37breqtrd 3962 1 (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481   class class class wbr 3937  cfv 5131  (class class class)co 5782  cc 7642  0cc0 7644  1c1 7645   + caddc 7647   < clt 7824  cmin 7957   # cap 8367   / cdiv 8456  0cn0 9001  seqcseq 10249  cexp 10323  abscabs 10801  cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  geoisumr  11319  ege2le3  11414  eftlub  11433
  Copyright terms: Public domain W3C validator