![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > absrpclap | GIF version |
Description: The absolute value of a number apart from zero is a positive real. (Contributed by Jim Kingdon, 11-Aug-2021.) |
Ref | Expression |
---|---|
absrpclap | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (abs‘𝐴) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absval 10565 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | |
2 | 1 | adantr 271 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) |
3 | simpl 108 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → 𝐴 ∈ ℂ) | |
4 | 3 | cjmulrcld 10516 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝐴 · (∗‘𝐴)) ∈ ℝ) |
5 | 3 | cjmulge0d 10518 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → 0 ≤ (𝐴 · (∗‘𝐴))) |
6 | 3 | cjcld 10505 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (∗‘𝐴) ∈ ℂ) |
7 | simpr 109 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → 𝐴 # 0) | |
8 | 3, 7 | cjap0d 10513 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (∗‘𝐴) # 0) |
9 | 3, 6, 7, 8 | mulap0d 8224 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝐴 · (∗‘𝐴)) # 0) |
10 | 4, 5, 9 | ap0gt0d 8213 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → 0 < (𝐴 · (∗‘𝐴))) |
11 | 4, 10 | elrpd 9270 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝐴 · (∗‘𝐴)) ∈ ℝ+) |
12 | rpsqrtcl 10605 | . . 3 ⊢ ((𝐴 · (∗‘𝐴)) ∈ ℝ+ → (√‘(𝐴 · (∗‘𝐴))) ∈ ℝ+) | |
13 | 11, 12 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (√‘(𝐴 · (∗‘𝐴))) ∈ ℝ+) |
14 | 2, 13 | eqeltrd 2171 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (abs‘𝐴) ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 class class class wbr 3867 ‘cfv 5049 (class class class)co 5690 ℂcc 7445 0cc0 7447 · cmul 7452 # cap 8155 ℝ+crp 9233 ∗ccj 10404 √csqrt 10560 abscabs 10561 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-iinf 4431 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-mulrcl 7541 ax-addcom 7542 ax-mulcom 7543 ax-addass 7544 ax-mulass 7545 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-1rid 7549 ax-0id 7550 ax-rnegex 7551 ax-precex 7552 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-apti 7557 ax-pre-ltadd 7558 ax-pre-mulgt0 7559 ax-pre-mulext 7560 ax-arch 7561 ax-caucvg 7562 |
This theorem depends on definitions: df-bi 116 df-dc 784 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rmo 2378 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-if 3414 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-id 4144 df-po 4147 df-iso 4148 df-iord 4217 df-on 4219 df-ilim 4220 df-suc 4222 df-iom 4434 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-1st 5949 df-2nd 5950 df-recs 6108 df-frec 6194 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-reap 8149 df-ap 8156 df-div 8237 df-inn 8521 df-2 8579 df-3 8580 df-4 8581 df-n0 8772 df-z 8849 df-uz 9119 df-rp 9234 df-iseq 10002 df-seq3 10003 df-exp 10086 df-cj 10407 df-re 10408 df-im 10409 df-rsqrt 10562 df-abs 10563 |
This theorem is referenced by: abs00ap 10626 absdivap 10634 absrpclapd 10752 |
Copyright terms: Public domain | W3C validator |