![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > leexp2a | GIF version |
Description: Weak ordering relationship for exponentiation. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 5-Jun-2014.) |
Ref | Expression |
---|---|
leexp2a | ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 999 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℝ) | |
2 | 0red 7989 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 0 ∈ ℝ) | |
3 | 1red 8003 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ∈ ℝ) | |
4 | 0lt1 8115 | . . . . . . . . 9 ⊢ 0 < 1 | |
5 | 4 | a1i 9 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 0 < 1) |
6 | simp2 1000 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ≤ 𝐴) | |
7 | 2, 3, 1, 5, 6 | ltletrd 8411 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 0 < 𝐴) |
8 | 1, 7 | elrpd 9725 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℝ+) |
9 | eluzel2 9564 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
10 | 9 | 3ad2ant3 1022 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) |
11 | rpexpcl 10573 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ) → (𝐴↑𝑀) ∈ ℝ+) | |
12 | 8, 10, 11 | syl2anc 411 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℝ+) |
13 | 12 | rpred 9728 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℝ) |
14 | 13 | recnd 8017 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℂ) |
15 | 14 | mulid2d 8007 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (1 · (𝐴↑𝑀)) = (𝐴↑𝑀)) |
16 | uznn0sub 9591 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈ ℕ0) | |
17 | 16 | 3ad2ant3 1022 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑁 − 𝑀) ∈ ℕ0) |
18 | expge1 10591 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 − 𝑀) ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑(𝑁 − 𝑀))) | |
19 | 1, 17, 6, 18 | syl3anc 1249 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ≤ (𝐴↑(𝑁 − 𝑀))) |
20 | 1 | recnd 8017 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ) |
21 | 1, 7 | gt0ap0d 8617 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 # 0) |
22 | eluzelz 9568 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
23 | 22 | 3ad2ant3 1022 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
24 | expsubap 10602 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐴↑(𝑁 − 𝑀)) = ((𝐴↑𝑁) / (𝐴↑𝑀))) | |
25 | 20, 21, 23, 10, 24 | syl22anc 1250 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑(𝑁 − 𝑀)) = ((𝐴↑𝑁) / (𝐴↑𝑀))) |
26 | 19, 25 | breqtrd 4044 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ≤ ((𝐴↑𝑁) / (𝐴↑𝑀))) |
27 | rpexpcl 10573 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) | |
28 | 8, 23, 27 | syl2anc 411 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑁) ∈ ℝ+) |
29 | 28 | rpred 9728 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑁) ∈ ℝ) |
30 | 3, 29, 12 | lemuldivd 9778 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((1 · (𝐴↑𝑀)) ≤ (𝐴↑𝑁) ↔ 1 ≤ ((𝐴↑𝑁) / (𝐴↑𝑀)))) |
31 | 26, 30 | mpbird 167 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (1 · (𝐴↑𝑀)) ≤ (𝐴↑𝑁)) |
32 | 15, 31 | eqbrtrrd 4042 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 ‘cfv 5235 (class class class)co 5897 ℂcc 7840 ℝcr 7841 0cc0 7842 1c1 7843 · cmul 7847 < clt 8023 ≤ cle 8024 − cmin 8159 # cap 8569 / cdiv 8660 ℕ0cn0 9207 ℤcz 9284 ℤ≥cuz 9559 ℝ+crp 9685 ↑cexp 10553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-recs 6331 df-frec 6417 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-n0 9208 df-z 9285 df-uz 9560 df-rp 9686 df-seqfrec 10479 df-exp 10554 |
This theorem is referenced by: expnlbnd2 10680 leexp2ad 10717 ef01bndlem 11799 |
Copyright terms: Public domain | W3C validator |