ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leexp2a GIF version

Theorem leexp2a 10541
Description: Weak ordering relationship for exponentiation. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
leexp2a ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ≤ (𝐴𝑁))

Proof of Theorem leexp2a
StepHypRef Expression
1 simp1 997 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
2 0red 7933 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
3 1red 7947 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
4 0lt1 8058 . . . . . . . . 9 0 < 1
54a1i 9 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 0 < 1)
6 simp2 998 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ≤ 𝐴)
72, 3, 1, 5, 6ltletrd 8354 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 0 < 𝐴)
81, 7elrpd 9662 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ+)
9 eluzel2 9504 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1093ad2ant3 1020 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
11 rpexpcl 10507 . . . . . 6 ((𝐴 ∈ ℝ+𝑀 ∈ ℤ) → (𝐴𝑀) ∈ ℝ+)
128, 10, 11syl2anc 411 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℝ+)
1312rpred 9665 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℝ)
1413recnd 7960 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℂ)
1514mulid2d 7950 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (1 · (𝐴𝑀)) = (𝐴𝑀))
16 uznn0sub 9530 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
17163ad2ant3 1020 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝑁𝑀) ∈ ℕ0)
18 expge1 10525 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑁𝑀) ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑(𝑁𝑀)))
191, 17, 6, 18syl3anc 1238 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ≤ (𝐴↑(𝑁𝑀)))
201recnd 7960 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
211, 7gt0ap0d 8560 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 # 0)
22 eluzelz 9508 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
23223ad2ant3 1020 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
24 expsubap 10536 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐴↑(𝑁𝑀)) = ((𝐴𝑁) / (𝐴𝑀)))
2520, 21, 23, 10, 24syl22anc 1239 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴↑(𝑁𝑀)) = ((𝐴𝑁) / (𝐴𝑀)))
2619, 25breqtrd 4024 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ≤ ((𝐴𝑁) / (𝐴𝑀)))
27 rpexpcl 10507 . . . . . 6 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
288, 23, 27syl2anc 411 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑁) ∈ ℝ+)
2928rpred 9665 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑁) ∈ ℝ)
303, 29, 12lemuldivd 9715 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → ((1 · (𝐴𝑀)) ≤ (𝐴𝑁) ↔ 1 ≤ ((𝐴𝑁) / (𝐴𝑀))))
3126, 30mpbird 167 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (1 · (𝐴𝑀)) ≤ (𝐴𝑁))
3215, 31eqbrtrrd 4022 1 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ≤ (𝐴𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 978   = wceq 1353  wcel 2146   class class class wbr 3998  cfv 5208  (class class class)co 5865  cc 7784  cr 7785  0cc0 7786  1c1 7787   · cmul 7791   < clt 7966  cle 7967  cmin 8102   # cap 8512   / cdiv 8601  0cn0 9147  cz 9224  cuz 9499  +crp 9622  cexp 10487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-n0 9148  df-z 9225  df-uz 9500  df-rp 9623  df-seqfrec 10414  df-exp 10488
This theorem is referenced by:  expnlbnd2  10613  leexp2ad  10650  ef01bndlem  11730
  Copyright terms: Public domain W3C validator