Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > leexp2a | GIF version |
Description: Weak ordering relationship for exponentiation. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 5-Jun-2014.) |
Ref | Expression |
---|---|
leexp2a | ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 997 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℝ) | |
2 | 0red 7933 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 0 ∈ ℝ) | |
3 | 1red 7947 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ∈ ℝ) | |
4 | 0lt1 8058 | . . . . . . . . 9 ⊢ 0 < 1 | |
5 | 4 | a1i 9 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 0 < 1) |
6 | simp2 998 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ≤ 𝐴) | |
7 | 2, 3, 1, 5, 6 | ltletrd 8354 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 0 < 𝐴) |
8 | 1, 7 | elrpd 9662 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℝ+) |
9 | eluzel2 9504 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
10 | 9 | 3ad2ant3 1020 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) |
11 | rpexpcl 10507 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ) → (𝐴↑𝑀) ∈ ℝ+) | |
12 | 8, 10, 11 | syl2anc 411 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℝ+) |
13 | 12 | rpred 9665 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℝ) |
14 | 13 | recnd 7960 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℂ) |
15 | 14 | mulid2d 7950 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (1 · (𝐴↑𝑀)) = (𝐴↑𝑀)) |
16 | uznn0sub 9530 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈ ℕ0) | |
17 | 16 | 3ad2ant3 1020 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑁 − 𝑀) ∈ ℕ0) |
18 | expge1 10525 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 − 𝑀) ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑(𝑁 − 𝑀))) | |
19 | 1, 17, 6, 18 | syl3anc 1238 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ≤ (𝐴↑(𝑁 − 𝑀))) |
20 | 1 | recnd 7960 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ) |
21 | 1, 7 | gt0ap0d 8560 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 # 0) |
22 | eluzelz 9508 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
23 | 22 | 3ad2ant3 1020 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
24 | expsubap 10536 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐴↑(𝑁 − 𝑀)) = ((𝐴↑𝑁) / (𝐴↑𝑀))) | |
25 | 20, 21, 23, 10, 24 | syl22anc 1239 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑(𝑁 − 𝑀)) = ((𝐴↑𝑁) / (𝐴↑𝑀))) |
26 | 19, 25 | breqtrd 4024 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ≤ ((𝐴↑𝑁) / (𝐴↑𝑀))) |
27 | rpexpcl 10507 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) | |
28 | 8, 23, 27 | syl2anc 411 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑁) ∈ ℝ+) |
29 | 28 | rpred 9665 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑁) ∈ ℝ) |
30 | 3, 29, 12 | lemuldivd 9715 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((1 · (𝐴↑𝑀)) ≤ (𝐴↑𝑁) ↔ 1 ≤ ((𝐴↑𝑁) / (𝐴↑𝑀)))) |
31 | 26, 30 | mpbird 167 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (1 · (𝐴↑𝑀)) ≤ (𝐴↑𝑁)) |
32 | 15, 31 | eqbrtrrd 4022 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 = wceq 1353 ∈ wcel 2146 class class class wbr 3998 ‘cfv 5208 (class class class)co 5865 ℂcc 7784 ℝcr 7785 0cc0 7786 1c1 7787 · cmul 7791 < clt 7966 ≤ cle 7967 − cmin 8102 # cap 8512 / cdiv 8601 ℕ0cn0 9147 ℤcz 9224 ℤ≥cuz 9499 ℝ+crp 9622 ↑cexp 10487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 df-n0 9148 df-z 9225 df-uz 9500 df-rp 9623 df-seqfrec 10414 df-exp 10488 |
This theorem is referenced by: expnlbnd2 10613 leexp2ad 10650 ef01bndlem 11730 |
Copyright terms: Public domain | W3C validator |