![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > leexp2a | GIF version |
Description: Weak ordering relationship for exponentiation. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 5-Jun-2014.) |
Ref | Expression |
---|---|
leexp2a | ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 999 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℝ) | |
2 | 0red 8022 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 0 ∈ ℝ) | |
3 | 1red 8036 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ∈ ℝ) | |
4 | 0lt1 8148 | . . . . . . . . 9 ⊢ 0 < 1 | |
5 | 4 | a1i 9 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 0 < 1) |
6 | simp2 1000 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ≤ 𝐴) | |
7 | 2, 3, 1, 5, 6 | ltletrd 8444 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 0 < 𝐴) |
8 | 1, 7 | elrpd 9762 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℝ+) |
9 | eluzel2 9600 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
10 | 9 | 3ad2ant3 1022 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) |
11 | rpexpcl 10632 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ) → (𝐴↑𝑀) ∈ ℝ+) | |
12 | 8, 10, 11 | syl2anc 411 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℝ+) |
13 | 12 | rpred 9765 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℝ) |
14 | 13 | recnd 8050 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℂ) |
15 | 14 | mulid2d 8040 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (1 · (𝐴↑𝑀)) = (𝐴↑𝑀)) |
16 | uznn0sub 9627 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈ ℕ0) | |
17 | 16 | 3ad2ant3 1022 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑁 − 𝑀) ∈ ℕ0) |
18 | expge1 10650 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 − 𝑀) ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑(𝑁 − 𝑀))) | |
19 | 1, 17, 6, 18 | syl3anc 1249 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ≤ (𝐴↑(𝑁 − 𝑀))) |
20 | 1 | recnd 8050 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ) |
21 | 1, 7 | gt0ap0d 8650 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 # 0) |
22 | eluzelz 9604 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
23 | 22 | 3ad2ant3 1022 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
24 | expsubap 10661 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐴↑(𝑁 − 𝑀)) = ((𝐴↑𝑁) / (𝐴↑𝑀))) | |
25 | 20, 21, 23, 10, 24 | syl22anc 1250 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑(𝑁 − 𝑀)) = ((𝐴↑𝑁) / (𝐴↑𝑀))) |
26 | 19, 25 | breqtrd 4056 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ≤ ((𝐴↑𝑁) / (𝐴↑𝑀))) |
27 | rpexpcl 10632 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) | |
28 | 8, 23, 27 | syl2anc 411 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑁) ∈ ℝ+) |
29 | 28 | rpred 9765 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑁) ∈ ℝ) |
30 | 3, 29, 12 | lemuldivd 9815 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((1 · (𝐴↑𝑀)) ≤ (𝐴↑𝑁) ↔ 1 ≤ ((𝐴↑𝑁) / (𝐴↑𝑀)))) |
31 | 26, 30 | mpbird 167 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (1 · (𝐴↑𝑀)) ≤ (𝐴↑𝑁)) |
32 | 15, 31 | eqbrtrrd 4054 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 ℝcr 7873 0cc0 7874 1c1 7875 · cmul 7879 < clt 8056 ≤ cle 8057 − cmin 8192 # cap 8602 / cdiv 8693 ℕ0cn0 9243 ℤcz 9320 ℤ≥cuz 9595 ℝ+crp 9722 ↑cexp 10612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-rp 9723 df-seqfrec 10522 df-exp 10613 |
This theorem is referenced by: expnlbnd2 10739 leexp2ad 10776 ef01bndlem 11902 |
Copyright terms: Public domain | W3C validator |