| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > leexp2a | GIF version | ||
| Description: Weak ordering relationship for exponentiation. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| Ref | Expression |
|---|---|
| leexp2a | ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℝ) | |
| 2 | 0red 8135 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 0 ∈ ℝ) | |
| 3 | 1red 8149 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ∈ ℝ) | |
| 4 | 0lt1 8261 | . . . . . . . . 9 ⊢ 0 < 1 | |
| 5 | 4 | a1i 9 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 0 < 1) |
| 6 | simp2 1022 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ≤ 𝐴) | |
| 7 | 2, 3, 1, 5, 6 | ltletrd 8558 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 0 < 𝐴) |
| 8 | 1, 7 | elrpd 9877 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℝ+) |
| 9 | eluzel2 9715 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 10 | 9 | 3ad2ant3 1044 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) |
| 11 | rpexpcl 10767 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ) → (𝐴↑𝑀) ∈ ℝ+) | |
| 12 | 8, 10, 11 | syl2anc 411 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℝ+) |
| 13 | 12 | rpred 9880 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℝ) |
| 14 | 13 | recnd 8163 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∈ ℂ) |
| 15 | 14 | mulid2d 8153 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (1 · (𝐴↑𝑀)) = (𝐴↑𝑀)) |
| 16 | uznn0sub 9742 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈ ℕ0) | |
| 17 | 16 | 3ad2ant3 1044 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑁 − 𝑀) ∈ ℕ0) |
| 18 | expge1 10785 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 − 𝑀) ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑(𝑁 − 𝑀))) | |
| 19 | 1, 17, 6, 18 | syl3anc 1271 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ≤ (𝐴↑(𝑁 − 𝑀))) |
| 20 | 1 | recnd 8163 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ) |
| 21 | 1, 7 | gt0ap0d 8764 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝐴 # 0) |
| 22 | eluzelz 9719 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 23 | 22 | 3ad2ant3 1044 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
| 24 | expsubap 10796 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐴↑(𝑁 − 𝑀)) = ((𝐴↑𝑁) / (𝐴↑𝑀))) | |
| 25 | 20, 21, 23, 10, 24 | syl22anc 1272 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑(𝑁 − 𝑀)) = ((𝐴↑𝑁) / (𝐴↑𝑀))) |
| 26 | 19, 25 | breqtrd 4108 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 1 ≤ ((𝐴↑𝑁) / (𝐴↑𝑀))) |
| 27 | rpexpcl 10767 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) | |
| 28 | 8, 23, 27 | syl2anc 411 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑁) ∈ ℝ+) |
| 29 | 28 | rpred 9880 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑁) ∈ ℝ) |
| 30 | 3, 29, 12 | lemuldivd 9930 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((1 · (𝐴↑𝑀)) ≤ (𝐴↑𝑁) ↔ 1 ≤ ((𝐴↑𝑁) / (𝐴↑𝑀)))) |
| 31 | 26, 30 | mpbird 167 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (1 · (𝐴↑𝑀)) ≤ (𝐴↑𝑁)) |
| 32 | 15, 31 | eqbrtrrd 4106 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ‘cfv 5314 (class class class)co 5994 ℂcc 7985 ℝcr 7986 0cc0 7987 1c1 7988 · cmul 7992 < clt 8169 ≤ cle 8170 − cmin 8305 # cap 8716 / cdiv 8807 ℕ0cn0 9357 ℤcz 9434 ℤ≥cuz 9710 ℝ+crp 9837 ↑cexp 10747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-n0 9358 df-z 9435 df-uz 9711 df-rp 9838 df-seqfrec 10657 df-exp 10748 |
| This theorem is referenced by: expnlbnd2 10874 leexp2ad 10911 ef01bndlem 12253 |
| Copyright terms: Public domain | W3C validator |