| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cvgratnn | GIF version | ||
| Description: Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms, then the infinite sum of the terms of 𝐹 converges to a complex number. Although this theorem is similar to cvgratz 11785 and cvgratgt0 11786, the decision to index starting at one is not merely cosmetic, as proving convergence using climcvg1n 11603 is sensitive to how a sequence is indexed. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 12-Nov-2022.) |
| Ref | Expression |
|---|---|
| cvgratnn.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| cvgratnn.4 | ⊢ (𝜑 → 𝐴 < 1) |
| cvgratnn.gt0 | ⊢ (𝜑 → 0 < 𝐴) |
| cvgratnn.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
| cvgratnn.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) |
| Ref | Expression |
|---|---|
| cvgratnn | ⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9683 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 9398 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 3 | cvgratnn.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) | |
| 4 | 1, 2, 3 | serf 10626 | . 2 ⊢ (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ) |
| 5 | cvgratnn.3 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 6 | cvgratnn.gt0 | . . . . . . . . . 10 ⊢ (𝜑 → 0 < 𝐴) | |
| 7 | 5, 6 | elrpd 9814 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| 8 | 7 | rprecred 9829 | . . . . . . . 8 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
| 9 | 1red 8086 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 10 | 8, 9 | resubcld 8452 | . . . . . . 7 ⊢ (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ) |
| 11 | cvgratnn.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 < 1) | |
| 12 | 7 | reclt1d 9831 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴))) |
| 13 | 11, 12 | mpbid 147 | . . . . . . . 8 ⊢ (𝜑 → 1 < (1 / 𝐴)) |
| 14 | 9, 8 | posdifd 8604 | . . . . . . . 8 ⊢ (𝜑 → (1 < (1 / 𝐴) ↔ 0 < ((1 / 𝐴) − 1))) |
| 15 | 13, 14 | mpbid 147 | . . . . . . 7 ⊢ (𝜑 → 0 < ((1 / 𝐴) − 1)) |
| 16 | 10, 15 | elrpd 9814 | . . . . . 6 ⊢ (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ+) |
| 17 | 16 | rpreccld 9828 | . . . . 5 ⊢ (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ+) |
| 18 | 17, 7 | rpdivcld 9835 | . . . 4 ⊢ (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ+) |
| 19 | fveq2 5575 | . . . . . . . 8 ⊢ (𝑘 = 1 → (𝐹‘𝑘) = (𝐹‘1)) | |
| 20 | 19 | eleq1d 2273 | . . . . . . 7 ⊢ (𝑘 = 1 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ)) |
| 21 | 3 | ralrimiva 2578 | . . . . . . 7 ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℂ) |
| 22 | 1nn 9046 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
| 23 | 22 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℕ) |
| 24 | 20, 21, 23 | rspcdva 2881 | . . . . . 6 ⊢ (𝜑 → (𝐹‘1) ∈ ℂ) |
| 25 | 24 | abscld 11434 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ) |
| 26 | 24 | absge0d 11437 | . . . . 5 ⊢ (𝜑 → 0 ≤ (abs‘(𝐹‘1))) |
| 27 | 25, 26 | ge0p1rpd 9848 | . . . 4 ⊢ (𝜑 → ((abs‘(𝐹‘1)) + 1) ∈ ℝ+) |
| 28 | 18, 27 | rpmulcld 9834 | . . 3 ⊢ (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ+) |
| 29 | 9, 5 | resubcld 8452 | . . . . 5 ⊢ (𝜑 → (1 − 𝐴) ∈ ℝ) |
| 30 | 5, 9 | posdifd 8604 | . . . . . 6 ⊢ (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴))) |
| 31 | 11, 30 | mpbid 147 | . . . . 5 ⊢ (𝜑 → 0 < (1 − 𝐴)) |
| 32 | 29, 31 | elrpd 9814 | . . . 4 ⊢ (𝜑 → (1 − 𝐴) ∈ ℝ+) |
| 33 | 7, 32 | rpdivcld 9835 | . . 3 ⊢ (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℝ+) |
| 34 | 28, 33 | rpmulcld 9834 | . 2 ⊢ (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) ∈ ℝ+) |
| 35 | 5 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝐴 ∈ ℝ) |
| 36 | 11 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝐴 < 1) |
| 37 | 6 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 0 < 𝐴) |
| 38 | 3 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
| 39 | cvgratnn.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) | |
| 40 | 39 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) |
| 41 | simprl 529 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑚 ∈ ℕ) | |
| 42 | simprr 531 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑛 ∈ (ℤ≥‘𝑚)) | |
| 43 | 35, 36, 37, 38, 40, 41, 42 | cvgratnnlemrate 11783 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (abs‘((seq1( + , 𝐹)‘𝑛) − (seq1( + , 𝐹)‘𝑚))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑚)) |
| 44 | 43 | ralrimivva 2587 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq1( + , 𝐹)‘𝑛) − (seq1( + , 𝐹)‘𝑚))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑚)) |
| 45 | 4, 34, 44 | climcvg1n 11603 | 1 ⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 dom cdm 4674 ‘cfv 5270 (class class class)co 5943 ℂcc 7922 ℝcr 7923 0cc0 7924 1c1 7925 + caddc 7927 · cmul 7929 < clt 8106 ≤ cle 8107 − cmin 8242 / cdiv 8744 ℕcn 9035 ℤ≥cuz 9647 seqcseq 10590 abscabs 11250 ⇝ cli 11531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-ico 10015 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-ihash 10919 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-clim 11532 df-sumdc 11607 |
| This theorem is referenced by: cvgratz 11785 |
| Copyright terms: Public domain | W3C validator |