Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnn GIF version

Theorem cvgratnn 11332
 Description: Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms, then the infinite sum of the terms of 𝐹 converges to a complex number. Although this theorem is similar to cvgratz 11333 and cvgratgt0 11334, the decision to index starting at one is not merely cosmetic, as proving convergence using climcvg1n 11151 is sensitive to how a sequence is indexed. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 12-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
Assertion
Ref Expression
cvgratnn (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem cvgratnn
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9385 . . 3 ℕ = (ℤ‘1)
2 1zzd 9105 . . 3 (𝜑 → 1 ∈ ℤ)
3 cvgratnn.6 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
41, 2, 3serf 10278 . 2 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
5 cvgratnn.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
6 cvgratnn.gt0 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
75, 6elrpd 9510 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
87rprecred 9525 . . . . . . . 8 (𝜑 → (1 / 𝐴) ∈ ℝ)
9 1red 7805 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
108, 9resubcld 8167 . . . . . . 7 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ)
11 cvgratnn.4 . . . . . . . . 9 (𝜑𝐴 < 1)
127reclt1d 9527 . . . . . . . . 9 (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
1311, 12mpbid 146 . . . . . . . 8 (𝜑 → 1 < (1 / 𝐴))
149, 8posdifd 8318 . . . . . . . 8 (𝜑 → (1 < (1 / 𝐴) ↔ 0 < ((1 / 𝐴) − 1)))
1513, 14mpbid 146 . . . . . . 7 (𝜑 → 0 < ((1 / 𝐴) − 1))
1610, 15elrpd 9510 . . . . . 6 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ+)
1716rpreccld 9524 . . . . 5 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ+)
1817, 7rpdivcld 9531 . . . 4 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ+)
19 fveq2 5429 . . . . . . . 8 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
2019eleq1d 2209 . . . . . . 7 (𝑘 = 1 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ))
213ralrimiva 2508 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
22 1nn 8755 . . . . . . . 8 1 ∈ ℕ
2322a1i 9 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
2420, 21, 23rspcdva 2798 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℂ)
2524abscld 10985 . . . . 5 (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ)
2624absge0d 10988 . . . . 5 (𝜑 → 0 ≤ (abs‘(𝐹‘1)))
2725, 26ge0p1rpd 9544 . . . 4 (𝜑 → ((abs‘(𝐹‘1)) + 1) ∈ ℝ+)
2818, 27rpmulcld 9530 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ+)
299, 5resubcld 8167 . . . . 5 (𝜑 → (1 − 𝐴) ∈ ℝ)
305, 9posdifd 8318 . . . . . 6 (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴)))
3111, 30mpbid 146 . . . . 5 (𝜑 → 0 < (1 − 𝐴))
3229, 31elrpd 9510 . . . 4 (𝜑 → (1 − 𝐴) ∈ ℝ+)
337, 32rpdivcld 9531 . . 3 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℝ+)
3428, 33rpmulcld 9530 . 2 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) ∈ ℝ+)
355adantr 274 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → 𝐴 ∈ ℝ)
3611adantr 274 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → 𝐴 < 1)
376adantr 274 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → 0 < 𝐴)
383adantlr 469 . . . 4 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
39 cvgratnn.7 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
4039adantlr 469 . . . 4 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
41 simprl 521 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑚 ∈ ℕ)
42 simprr 522 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛 ∈ (ℤ𝑚))
4335, 36, 37, 38, 40, 41, 42cvgratnnlemrate 11331 . . 3 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → (abs‘((seq1( + , 𝐹)‘𝑛) − (seq1( + , 𝐹)‘𝑚))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑚))
4443ralrimivva 2517 . 2 (𝜑 → ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ𝑚)(abs‘((seq1( + , 𝐹)‘𝑛) − (seq1( + , 𝐹)‘𝑚))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑚))
454, 34, 44climcvg1n 11151 1 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1332   ∈ wcel 1481   class class class wbr 3937  dom cdm 4547  ‘cfv 5131  (class class class)co 5782  ℂcc 7642  ℝcr 7643  0cc0 7644  1c1 7645   + caddc 7647   · cmul 7649   < clt 7824   ≤ cle 7825   − cmin 7957   / cdiv 8456  ℕcn 8744  ℤ≥cuz 9350  seqcseq 10249  abscabs 10801   ⇝ cli 11079 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155 This theorem is referenced by:  cvgratz  11333
 Copyright terms: Public domain W3C validator