![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cvgratnn | GIF version |
Description: Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms, then the infinite sum of the terms of 𝐹 converges to a complex number. Although this theorem is similar to cvgratz 11075 and cvgratgt0 11076, the decision to index starting at one is not merely cosmetic, as proving convergence using climcvg1n 10893 is sensitive to how a sequence is indexed. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 12-Nov-2022.) |
Ref | Expression |
---|---|
cvgratnn.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
cvgratnn.4 | ⊢ (𝜑 → 𝐴 < 1) |
cvgratnn.gt0 | ⊢ (𝜑 → 0 < 𝐴) |
cvgratnn.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
cvgratnn.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) |
Ref | Expression |
---|---|
cvgratnn | ⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 9153 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 8875 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
3 | cvgratnn.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) | |
4 | 1, 2, 3 | serf 10024 | . 2 ⊢ (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ) |
5 | cvgratnn.3 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
6 | cvgratnn.gt0 | . . . . . . . . . 10 ⊢ (𝜑 → 0 < 𝐴) | |
7 | 5, 6 | elrpd 9270 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
8 | 7 | rprecred 9284 | . . . . . . . 8 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
9 | 1red 7600 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℝ) | |
10 | 8, 9 | resubcld 7956 | . . . . . . 7 ⊢ (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ) |
11 | cvgratnn.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 < 1) | |
12 | 7 | reclt1d 9286 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴))) |
13 | 11, 12 | mpbid 146 | . . . . . . . 8 ⊢ (𝜑 → 1 < (1 / 𝐴)) |
14 | 9, 8 | posdifd 8106 | . . . . . . . 8 ⊢ (𝜑 → (1 < (1 / 𝐴) ↔ 0 < ((1 / 𝐴) − 1))) |
15 | 13, 14 | mpbid 146 | . . . . . . 7 ⊢ (𝜑 → 0 < ((1 / 𝐴) − 1)) |
16 | 10, 15 | elrpd 9270 | . . . . . 6 ⊢ (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ+) |
17 | 16 | rpreccld 9283 | . . . . 5 ⊢ (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ+) |
18 | 17, 7 | rpdivcld 9290 | . . . 4 ⊢ (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ+) |
19 | fveq2 5340 | . . . . . . . 8 ⊢ (𝑘 = 1 → (𝐹‘𝑘) = (𝐹‘1)) | |
20 | 19 | eleq1d 2163 | . . . . . . 7 ⊢ (𝑘 = 1 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ)) |
21 | 3 | ralrimiva 2458 | . . . . . . 7 ⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℂ) |
22 | 1nn 8531 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
23 | 22 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℕ) |
24 | 20, 21, 23 | rspcdva 2741 | . . . . . 6 ⊢ (𝜑 → (𝐹‘1) ∈ ℂ) |
25 | 24 | abscld 10729 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ) |
26 | 24 | absge0d 10732 | . . . . 5 ⊢ (𝜑 → 0 ≤ (abs‘(𝐹‘1))) |
27 | 25, 26 | ge0p1rpd 9303 | . . . 4 ⊢ (𝜑 → ((abs‘(𝐹‘1)) + 1) ∈ ℝ+) |
28 | 18, 27 | rpmulcld 9289 | . . 3 ⊢ (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ+) |
29 | 9, 5 | resubcld 7956 | . . . . 5 ⊢ (𝜑 → (1 − 𝐴) ∈ ℝ) |
30 | 5, 9 | posdifd 8106 | . . . . . 6 ⊢ (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴))) |
31 | 11, 30 | mpbid 146 | . . . . 5 ⊢ (𝜑 → 0 < (1 − 𝐴)) |
32 | 29, 31 | elrpd 9270 | . . . 4 ⊢ (𝜑 → (1 − 𝐴) ∈ ℝ+) |
33 | 7, 32 | rpdivcld 9290 | . . 3 ⊢ (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℝ+) |
34 | 28, 33 | rpmulcld 9289 | . 2 ⊢ (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) ∈ ℝ+) |
35 | 5 | adantr 271 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝐴 ∈ ℝ) |
36 | 11 | adantr 271 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝐴 < 1) |
37 | 6 | adantr 271 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 0 < 𝐴) |
38 | 3 | adantlr 462 | . . . 4 ⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
39 | cvgratnn.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) | |
40 | 39 | adantlr 462 | . . . 4 ⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) |
41 | simprl 499 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑚 ∈ ℕ) | |
42 | simprr 500 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑛 ∈ (ℤ≥‘𝑚)) | |
43 | 35, 36, 37, 38, 40, 41, 42 | cvgratnnlemrate 11073 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (abs‘((seq1( + , 𝐹)‘𝑛) − (seq1( + , 𝐹)‘𝑚))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑚)) |
44 | 43 | ralrimivva 2467 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq1( + , 𝐹)‘𝑛) − (seq1( + , 𝐹)‘𝑚))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑚)) |
45 | 4, 34, 44 | climcvg1n 10893 | 1 ⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 class class class wbr 3867 dom cdm 4467 ‘cfv 5049 (class class class)co 5690 ℂcc 7445 ℝcr 7446 0cc0 7447 1c1 7448 + caddc 7450 · cmul 7452 < clt 7619 ≤ cle 7620 − cmin 7750 / cdiv 8236 ℕcn 8520 ℤ≥cuz 9118 seqcseq 10000 abscabs 10545 ⇝ cli 10821 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-iinf 4431 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-mulrcl 7541 ax-addcom 7542 ax-mulcom 7543 ax-addass 7544 ax-mulass 7545 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-1rid 7549 ax-0id 7550 ax-rnegex 7551 ax-precex 7552 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-apti 7557 ax-pre-ltadd 7558 ax-pre-mulgt0 7559 ax-pre-mulext 7560 ax-arch 7561 ax-caucvg 7562 |
This theorem depends on definitions: df-bi 116 df-dc 784 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rmo 2378 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-if 3414 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-id 4144 df-po 4147 df-iso 4148 df-iord 4217 df-on 4219 df-ilim 4220 df-suc 4222 df-iom 4434 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-isom 5058 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-1st 5949 df-2nd 5950 df-recs 6108 df-irdg 6173 df-frec 6194 df-1o 6219 df-oadd 6223 df-er 6332 df-en 6538 df-dom 6539 df-fin 6540 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-reap 8149 df-ap 8156 df-div 8237 df-inn 8521 df-2 8579 df-3 8580 df-4 8581 df-n0 8772 df-z 8849 df-uz 9119 df-q 9204 df-rp 9234 df-ico 9460 df-fz 9574 df-fzo 9703 df-seqfrec 10001 df-exp 10070 df-ihash 10299 df-cj 10391 df-re 10392 df-im 10393 df-rsqrt 10546 df-abs 10547 df-clim 10822 df-sumdc 10897 |
This theorem is referenced by: cvgratz 11075 |
Copyright terms: Public domain | W3C validator |