ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnn GIF version

Theorem cvgratnn 11542
Description: Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms, then the infinite sum of the terms of 𝐹 converges to a complex number. Although this theorem is similar to cvgratz 11543 and cvgratgt0 11544, the decision to index starting at one is not merely cosmetic, as proving convergence using climcvg1n 11361 is sensitive to how a sequence is indexed. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 12-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
Assertion
Ref Expression
cvgratnn (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem cvgratnn
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9566 . . 3 ℕ = (ℤ‘1)
2 1zzd 9283 . . 3 (𝜑 → 1 ∈ ℤ)
3 cvgratnn.6 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
41, 2, 3serf 10477 . 2 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
5 cvgratnn.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
6 cvgratnn.gt0 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
75, 6elrpd 9696 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
87rprecred 9711 . . . . . . . 8 (𝜑 → (1 / 𝐴) ∈ ℝ)
9 1red 7975 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
108, 9resubcld 8341 . . . . . . 7 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ)
11 cvgratnn.4 . . . . . . . . 9 (𝜑𝐴 < 1)
127reclt1d 9713 . . . . . . . . 9 (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
1311, 12mpbid 147 . . . . . . . 8 (𝜑 → 1 < (1 / 𝐴))
149, 8posdifd 8492 . . . . . . . 8 (𝜑 → (1 < (1 / 𝐴) ↔ 0 < ((1 / 𝐴) − 1)))
1513, 14mpbid 147 . . . . . . 7 (𝜑 → 0 < ((1 / 𝐴) − 1))
1610, 15elrpd 9696 . . . . . 6 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ+)
1716rpreccld 9710 . . . . 5 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ+)
1817, 7rpdivcld 9717 . . . 4 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ+)
19 fveq2 5517 . . . . . . . 8 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
2019eleq1d 2246 . . . . . . 7 (𝑘 = 1 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ))
213ralrimiva 2550 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
22 1nn 8933 . . . . . . . 8 1 ∈ ℕ
2322a1i 9 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
2420, 21, 23rspcdva 2848 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℂ)
2524abscld 11193 . . . . 5 (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ)
2624absge0d 11196 . . . . 5 (𝜑 → 0 ≤ (abs‘(𝐹‘1)))
2725, 26ge0p1rpd 9730 . . . 4 (𝜑 → ((abs‘(𝐹‘1)) + 1) ∈ ℝ+)
2818, 27rpmulcld 9716 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ+)
299, 5resubcld 8341 . . . . 5 (𝜑 → (1 − 𝐴) ∈ ℝ)
305, 9posdifd 8492 . . . . . 6 (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴)))
3111, 30mpbid 147 . . . . 5 (𝜑 → 0 < (1 − 𝐴))
3229, 31elrpd 9696 . . . 4 (𝜑 → (1 − 𝐴) ∈ ℝ+)
337, 32rpdivcld 9717 . . 3 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℝ+)
3428, 33rpmulcld 9716 . 2 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) ∈ ℝ+)
355adantr 276 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → 𝐴 ∈ ℝ)
3611adantr 276 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → 𝐴 < 1)
376adantr 276 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → 0 < 𝐴)
383adantlr 477 . . . 4 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
39 cvgratnn.7 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
4039adantlr 477 . . . 4 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
41 simprl 529 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑚 ∈ ℕ)
42 simprr 531 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛 ∈ (ℤ𝑚))
4335, 36, 37, 38, 40, 41, 42cvgratnnlemrate 11541 . . 3 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → (abs‘((seq1( + , 𝐹)‘𝑛) − (seq1( + , 𝐹)‘𝑚))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑚))
4443ralrimivva 2559 . 2 (𝜑 → ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ𝑚)(abs‘((seq1( + , 𝐹)‘𝑛) − (seq1( + , 𝐹)‘𝑚))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑚))
454, 34, 44climcvg1n 11361 1 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148   class class class wbr 4005  dom cdm 4628  cfv 5218  (class class class)co 5878  cc 7812  cr 7813  0cc0 7814  1c1 7815   + caddc 7817   · cmul 7819   < clt 7995  cle 7996  cmin 8131   / cdiv 8632  cn 8922  cuz 9531  seqcseq 10448  abscabs 11009  cli 11289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-oadd 6424  df-er 6538  df-en 6744  df-dom 6745  df-fin 6746  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-ico 9897  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-ihash 10759  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-sumdc 11365
This theorem is referenced by:  cvgratz  11543
  Copyright terms: Public domain W3C validator