ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnn GIF version

Theorem cvgratnn 11074
Description: Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms, then the infinite sum of the terms of 𝐹 converges to a complex number. Although this theorem is similar to cvgratz 11075 and cvgratgt0 11076, the decision to index starting at one is not merely cosmetic, as proving convergence using climcvg1n 10893 is sensitive to how a sequence is indexed. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 12-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
Assertion
Ref Expression
cvgratnn (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem cvgratnn
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9153 . . 3 ℕ = (ℤ‘1)
2 1zzd 8875 . . 3 (𝜑 → 1 ∈ ℤ)
3 cvgratnn.6 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
41, 2, 3serf 10024 . 2 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
5 cvgratnn.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
6 cvgratnn.gt0 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
75, 6elrpd 9270 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
87rprecred 9284 . . . . . . . 8 (𝜑 → (1 / 𝐴) ∈ ℝ)
9 1red 7600 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
108, 9resubcld 7956 . . . . . . 7 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ)
11 cvgratnn.4 . . . . . . . . 9 (𝜑𝐴 < 1)
127reclt1d 9286 . . . . . . . . 9 (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
1311, 12mpbid 146 . . . . . . . 8 (𝜑 → 1 < (1 / 𝐴))
149, 8posdifd 8106 . . . . . . . 8 (𝜑 → (1 < (1 / 𝐴) ↔ 0 < ((1 / 𝐴) − 1)))
1513, 14mpbid 146 . . . . . . 7 (𝜑 → 0 < ((1 / 𝐴) − 1))
1610, 15elrpd 9270 . . . . . 6 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ+)
1716rpreccld 9283 . . . . 5 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ+)
1817, 7rpdivcld 9290 . . . 4 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ+)
19 fveq2 5340 . . . . . . . 8 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
2019eleq1d 2163 . . . . . . 7 (𝑘 = 1 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ))
213ralrimiva 2458 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
22 1nn 8531 . . . . . . . 8 1 ∈ ℕ
2322a1i 9 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
2420, 21, 23rspcdva 2741 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℂ)
2524abscld 10729 . . . . 5 (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ)
2624absge0d 10732 . . . . 5 (𝜑 → 0 ≤ (abs‘(𝐹‘1)))
2725, 26ge0p1rpd 9303 . . . 4 (𝜑 → ((abs‘(𝐹‘1)) + 1) ∈ ℝ+)
2818, 27rpmulcld 9289 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ+)
299, 5resubcld 7956 . . . . 5 (𝜑 → (1 − 𝐴) ∈ ℝ)
305, 9posdifd 8106 . . . . . 6 (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴)))
3111, 30mpbid 146 . . . . 5 (𝜑 → 0 < (1 − 𝐴))
3229, 31elrpd 9270 . . . 4 (𝜑 → (1 − 𝐴) ∈ ℝ+)
337, 32rpdivcld 9290 . . 3 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℝ+)
3428, 33rpmulcld 9289 . 2 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) ∈ ℝ+)
355adantr 271 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → 𝐴 ∈ ℝ)
3611adantr 271 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → 𝐴 < 1)
376adantr 271 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → 0 < 𝐴)
383adantlr 462 . . . 4 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
39 cvgratnn.7 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
4039adantlr 462 . . . 4 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
41 simprl 499 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑚 ∈ ℕ)
42 simprr 500 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛 ∈ (ℤ𝑚))
4335, 36, 37, 38, 40, 41, 42cvgratnnlemrate 11073 . . 3 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑚))) → (abs‘((seq1( + , 𝐹)‘𝑛) − (seq1( + , 𝐹)‘𝑚))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑚))
4443ralrimivva 2467 . 2 (𝜑 → ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ𝑚)(abs‘((seq1( + , 𝐹)‘𝑛) − (seq1( + , 𝐹)‘𝑚))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑚))
454, 34, 44climcvg1n 10893 1 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1296  wcel 1445   class class class wbr 3867  dom cdm 4467  cfv 5049  (class class class)co 5690  cc 7445  cr 7446  0cc0 7447  1c1 7448   + caddc 7450   · cmul 7452   < clt 7619  cle 7620  cmin 7750   / cdiv 8236  cn 8520  cuz 9118  seqcseq 10000  abscabs 10545  cli 10821
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560  ax-arch 7561  ax-caucvg 7562
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-isom 5058  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-frec 6194  df-1o 6219  df-oadd 6223  df-er 6332  df-en 6538  df-dom 6539  df-fin 6540  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-3 8580  df-4 8581  df-n0 8772  df-z 8849  df-uz 9119  df-q 9204  df-rp 9234  df-ico 9460  df-fz 9574  df-fzo 9703  df-seqfrec 10001  df-exp 10070  df-ihash 10299  df-cj 10391  df-re 10392  df-im 10393  df-rsqrt 10546  df-abs 10547  df-clim 10822  df-sumdc 10897
This theorem is referenced by:  cvgratz  11075
  Copyright terms: Public domain W3C validator