ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlembern GIF version

Theorem cvgratnnlembern 11464
Description: Lemma for cvgratnn 11472. Upper bound for a geometric progression of positive ratio less than one. (Contributed by Jim Kingdon, 24-Nov-2022.)
Hypotheses
Ref Expression
cvgratnnlembern.3 (𝜑𝐴 ∈ ℝ)
cvgratnnlembern.4 (𝜑𝐴 < 1)
cvgratnnlembern.gt0 (𝜑 → 0 < 𝐴)
cvgratnnlembern.m (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
cvgratnnlembern (𝜑 → (𝐴𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀))

Proof of Theorem cvgratnnlembern
StepHypRef Expression
1 cvgratnnlembern.3 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
2 cvgratnnlembern.gt0 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
31, 2gt0ap0d 8527 . . . . . . . . 9 (𝜑𝐴 # 0)
41, 3rerecclapd 8730 . . . . . . . 8 (𝜑 → (1 / 𝐴) ∈ ℝ)
5 1red 7914 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
64, 5resubcld 8279 . . . . . . 7 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ)
7 cvgratnnlembern.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
87nnred 8870 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
96, 8remulcld 7929 . . . . . 6 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) ∈ ℝ)
109recnd 7927 . . . . 5 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) ∈ ℂ)
11 cvgratnnlembern.4 . . . . . . . . . 10 (𝜑𝐴 < 1)
121, 2elrpd 9629 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ+)
1312reclt1d 9646 . . . . . . . . . 10 (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
1411, 13mpbid 146 . . . . . . . . 9 (𝜑 → 1 < (1 / 𝐴))
155, 4posdifd 8430 . . . . . . . . 9 (𝜑 → (1 < (1 / 𝐴) ↔ 0 < ((1 / 𝐴) − 1)))
1614, 15mpbid 146 . . . . . . . 8 (𝜑 → 0 < ((1 / 𝐴) − 1))
176, 16elrpd 9629 . . . . . . 7 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ+)
187nnrpd 9630 . . . . . . 7 (𝜑𝑀 ∈ ℝ+)
1917, 18rpmulcld 9649 . . . . . 6 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) ∈ ℝ+)
2019rpap0d 9638 . . . . 5 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) # 0)
2110, 20recrecapd 8681 . . . 4 (𝜑 → (1 / (1 / (((1 / 𝐴) − 1) · 𝑀))) = (((1 / 𝐴) − 1) · 𝑀))
229, 5readdcld 7928 . . . . 5 (𝜑 → ((((1 / 𝐴) − 1) · 𝑀) + 1) ∈ ℝ)
237nnnn0d 9167 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
241, 23reexpcld 10605 . . . . . 6 (𝜑 → (𝐴𝑀) ∈ ℝ)
251recnd 7927 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
267nnzd 9312 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
2725, 3, 26expap0d 10594 . . . . . 6 (𝜑 → (𝐴𝑀) # 0)
2824, 27rerecclapd 8730 . . . . 5 (𝜑 → (1 / (𝐴𝑀)) ∈ ℝ)
299ltp1d 8825 . . . . 5 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) < ((((1 / 𝐴) − 1) · 𝑀) + 1))
30 0le1 8379 . . . . . . . . 9 0 ≤ 1
3130a1i 9 . . . . . . . 8 (𝜑 → 0 ≤ 1)
325, 12, 31divge0d 9673 . . . . . . 7 (𝜑 → 0 ≤ (1 / 𝐴))
33 bernneq2 10576 . . . . . . 7 (((1 / 𝐴) ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ 0 ≤ (1 / 𝐴)) → ((((1 / 𝐴) − 1) · 𝑀) + 1) ≤ ((1 / 𝐴)↑𝑀))
344, 23, 32, 33syl3anc 1228 . . . . . 6 (𝜑 → ((((1 / 𝐴) − 1) · 𝑀) + 1) ≤ ((1 / 𝐴)↑𝑀))
3525, 3, 26exprecapd 10596 . . . . . 6 (𝜑 → ((1 / 𝐴)↑𝑀) = (1 / (𝐴𝑀)))
3634, 35breqtrd 4008 . . . . 5 (𝜑 → ((((1 / 𝐴) − 1) · 𝑀) + 1) ≤ (1 / (𝐴𝑀)))
379, 22, 28, 29, 36ltletrd 8321 . . . 4 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) < (1 / (𝐴𝑀)))
3821, 37eqbrtrd 4004 . . 3 (𝜑 → (1 / (1 / (((1 / 𝐴) − 1) · 𝑀))) < (1 / (𝐴𝑀)))
3912, 26rpexpcld 10612 . . . 4 (𝜑 → (𝐴𝑀) ∈ ℝ+)
4019rpreccld 9643 . . . 4 (𝜑 → (1 / (((1 / 𝐴) − 1) · 𝑀)) ∈ ℝ+)
4139, 40ltrecd 9651 . . 3 (𝜑 → ((𝐴𝑀) < (1 / (((1 / 𝐴) − 1) · 𝑀)) ↔ (1 / (1 / (((1 / 𝐴) − 1) · 𝑀))) < (1 / (𝐴𝑀))))
4238, 41mpbird 166 . 2 (𝜑 → (𝐴𝑀) < (1 / (((1 / 𝐴) − 1) · 𝑀)))
436recnd 7927 . . 3 (𝜑 → ((1 / 𝐴) − 1) ∈ ℂ)
447nncnd 8871 . . 3 (𝜑𝑀 ∈ ℂ)
4517rpap0d 9638 . . 3 (𝜑 → ((1 / 𝐴) − 1) # 0)
4618rpap0d 9638 . . 3 (𝜑𝑀 # 0)
4743, 44, 45, 46recdivap2d 8704 . 2 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝑀) = (1 / (((1 / 𝐴) − 1) · 𝑀)))
4842, 47breqtrrd 4010 1 (𝜑 → (𝐴𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136   class class class wbr 3982  (class class class)co 5842  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  cmin 8069   / cdiv 8568  cn 8857  0cn0 9114  cexp 10454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  cvgratnnlemfm  11470
  Copyright terms: Public domain W3C validator