Proof of Theorem cvgratnnlembern
| Step | Hyp | Ref
| Expression |
| 1 | | cvgratnnlembern.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 2 | | cvgratnnlembern.gt0 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < 𝐴) |
| 3 | 1, 2 | gt0ap0d 8656 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 # 0) |
| 4 | 1, 3 | rerecclapd 8861 |
. . . . . . . 8
⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
| 5 | | 1red 8041 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
| 6 | 4, 5 | resubcld 8407 |
. . . . . . 7
⊢ (𝜑 → ((1 / 𝐴) − 1) ∈
ℝ) |
| 7 | | cvgratnnlembern.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 8 | 7 | nnred 9003 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 9 | 6, 8 | remulcld 8057 |
. . . . . 6
⊢ (𝜑 → (((1 / 𝐴) − 1) · 𝑀) ∈ ℝ) |
| 10 | 9 | recnd 8055 |
. . . . 5
⊢ (𝜑 → (((1 / 𝐴) − 1) · 𝑀) ∈ ℂ) |
| 11 | | cvgratnnlembern.4 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 < 1) |
| 12 | 1, 2 | elrpd 9768 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
| 13 | 12 | reclt1d 9785 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴))) |
| 14 | 11, 13 | mpbid 147 |
. . . . . . . . 9
⊢ (𝜑 → 1 < (1 / 𝐴)) |
| 15 | 5, 4 | posdifd 8559 |
. . . . . . . . 9
⊢ (𝜑 → (1 < (1 / 𝐴) ↔ 0 < ((1 / 𝐴) − 1))) |
| 16 | 14, 15 | mpbid 147 |
. . . . . . . 8
⊢ (𝜑 → 0 < ((1 / 𝐴) − 1)) |
| 17 | 6, 16 | elrpd 9768 |
. . . . . . 7
⊢ (𝜑 → ((1 / 𝐴) − 1) ∈
ℝ+) |
| 18 | 7 | nnrpd 9769 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℝ+) |
| 19 | 17, 18 | rpmulcld 9788 |
. . . . . 6
⊢ (𝜑 → (((1 / 𝐴) − 1) · 𝑀) ∈
ℝ+) |
| 20 | 19 | rpap0d 9777 |
. . . . 5
⊢ (𝜑 → (((1 / 𝐴) − 1) · 𝑀) # 0) |
| 21 | 10, 20 | recrecapd 8812 |
. . . 4
⊢ (𝜑 → (1 / (1 / (((1 / 𝐴) − 1) · 𝑀))) = (((1 / 𝐴) − 1) · 𝑀)) |
| 22 | 9, 5 | readdcld 8056 |
. . . . 5
⊢ (𝜑 → ((((1 / 𝐴) − 1) · 𝑀) + 1) ∈ ℝ) |
| 23 | 7 | nnnn0d 9302 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 24 | 1, 23 | reexpcld 10782 |
. . . . . 6
⊢ (𝜑 → (𝐴↑𝑀) ∈ ℝ) |
| 25 | 1 | recnd 8055 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 26 | 7 | nnzd 9447 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 27 | 25, 3, 26 | expap0d 10771 |
. . . . . 6
⊢ (𝜑 → (𝐴↑𝑀) # 0) |
| 28 | 24, 27 | rerecclapd 8861 |
. . . . 5
⊢ (𝜑 → (1 / (𝐴↑𝑀)) ∈ ℝ) |
| 29 | 9 | ltp1d 8957 |
. . . . 5
⊢ (𝜑 → (((1 / 𝐴) − 1) · 𝑀) < ((((1 / 𝐴) − 1) · 𝑀) + 1)) |
| 30 | | 0le1 8508 |
. . . . . . . . 9
⊢ 0 ≤
1 |
| 31 | 30 | a1i 9 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 1) |
| 32 | 5, 12, 31 | divge0d 9812 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ (1 / 𝐴)) |
| 33 | | bernneq2 10753 |
. . . . . . 7
⊢ (((1 /
𝐴) ∈ ℝ ∧
𝑀 ∈
ℕ0 ∧ 0 ≤ (1 / 𝐴)) → ((((1 / 𝐴) − 1) · 𝑀) + 1) ≤ ((1 / 𝐴)↑𝑀)) |
| 34 | 4, 23, 32, 33 | syl3anc 1249 |
. . . . . 6
⊢ (𝜑 → ((((1 / 𝐴) − 1) · 𝑀) + 1) ≤ ((1 / 𝐴)↑𝑀)) |
| 35 | 25, 3, 26 | exprecapd 10773 |
. . . . . 6
⊢ (𝜑 → ((1 / 𝐴)↑𝑀) = (1 / (𝐴↑𝑀))) |
| 36 | 34, 35 | breqtrd 4059 |
. . . . 5
⊢ (𝜑 → ((((1 / 𝐴) − 1) · 𝑀) + 1) ≤ (1 / (𝐴↑𝑀))) |
| 37 | 9, 22, 28, 29, 36 | ltletrd 8450 |
. . . 4
⊢ (𝜑 → (((1 / 𝐴) − 1) · 𝑀) < (1 / (𝐴↑𝑀))) |
| 38 | 21, 37 | eqbrtrd 4055 |
. . 3
⊢ (𝜑 → (1 / (1 / (((1 / 𝐴) − 1) · 𝑀))) < (1 / (𝐴↑𝑀))) |
| 39 | 12, 26 | rpexpcld 10789 |
. . . 4
⊢ (𝜑 → (𝐴↑𝑀) ∈
ℝ+) |
| 40 | 19 | rpreccld 9782 |
. . . 4
⊢ (𝜑 → (1 / (((1 / 𝐴) − 1) · 𝑀)) ∈
ℝ+) |
| 41 | 39, 40 | ltrecd 9790 |
. . 3
⊢ (𝜑 → ((𝐴↑𝑀) < (1 / (((1 / 𝐴) − 1) · 𝑀)) ↔ (1 / (1 / (((1 / 𝐴) − 1) · 𝑀))) < (1 / (𝐴↑𝑀)))) |
| 42 | 38, 41 | mpbird 167 |
. 2
⊢ (𝜑 → (𝐴↑𝑀) < (1 / (((1 / 𝐴) − 1) · 𝑀))) |
| 43 | 6 | recnd 8055 |
. . 3
⊢ (𝜑 → ((1 / 𝐴) − 1) ∈
ℂ) |
| 44 | 7 | nncnd 9004 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 45 | 17 | rpap0d 9777 |
. . 3
⊢ (𝜑 → ((1 / 𝐴) − 1) # 0) |
| 46 | 18 | rpap0d 9777 |
. . 3
⊢ (𝜑 → 𝑀 # 0) |
| 47 | 43, 44, 45, 46 | recdivap2d 8835 |
. 2
⊢ (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝑀) = (1 / (((1 / 𝐴) − 1) · 𝑀))) |
| 48 | 42, 47 | breqtrrd 4061 |
1
⊢ (𝜑 → (𝐴↑𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀)) |