ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlembern GIF version

Theorem cvgratnnlembern 11292
Description: Lemma for cvgratnn 11300. Upper bound for a geometric progression of positive ratio less than one. (Contributed by Jim Kingdon, 24-Nov-2022.)
Hypotheses
Ref Expression
cvgratnnlembern.3 (𝜑𝐴 ∈ ℝ)
cvgratnnlembern.4 (𝜑𝐴 < 1)
cvgratnnlembern.gt0 (𝜑 → 0 < 𝐴)
cvgratnnlembern.m (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
cvgratnnlembern (𝜑 → (𝐴𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀))

Proof of Theorem cvgratnnlembern
StepHypRef Expression
1 cvgratnnlembern.3 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
2 cvgratnnlembern.gt0 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
31, 2gt0ap0d 8391 . . . . . . . . 9 (𝜑𝐴 # 0)
41, 3rerecclapd 8593 . . . . . . . 8 (𝜑 → (1 / 𝐴) ∈ ℝ)
5 1red 7781 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
64, 5resubcld 8143 . . . . . . 7 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ)
7 cvgratnnlembern.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
87nnred 8733 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
96, 8remulcld 7796 . . . . . 6 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) ∈ ℝ)
109recnd 7794 . . . . 5 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) ∈ ℂ)
11 cvgratnnlembern.4 . . . . . . . . . 10 (𝜑𝐴 < 1)
121, 2elrpd 9481 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ+)
1312reclt1d 9497 . . . . . . . . . 10 (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
1411, 13mpbid 146 . . . . . . . . 9 (𝜑 → 1 < (1 / 𝐴))
155, 4posdifd 8294 . . . . . . . . 9 (𝜑 → (1 < (1 / 𝐴) ↔ 0 < ((1 / 𝐴) − 1)))
1614, 15mpbid 146 . . . . . . . 8 (𝜑 → 0 < ((1 / 𝐴) − 1))
176, 16elrpd 9481 . . . . . . 7 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ+)
187nnrpd 9482 . . . . . . 7 (𝜑𝑀 ∈ ℝ+)
1917, 18rpmulcld 9500 . . . . . 6 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) ∈ ℝ+)
2019rpap0d 9489 . . . . 5 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) # 0)
2110, 20recrecapd 8545 . . . 4 (𝜑 → (1 / (1 / (((1 / 𝐴) − 1) · 𝑀))) = (((1 / 𝐴) − 1) · 𝑀))
229, 5readdcld 7795 . . . . 5 (𝜑 → ((((1 / 𝐴) − 1) · 𝑀) + 1) ∈ ℝ)
237nnnn0d 9030 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
241, 23reexpcld 10441 . . . . . 6 (𝜑 → (𝐴𝑀) ∈ ℝ)
251recnd 7794 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
267nnzd 9172 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
2725, 3, 26expap0d 10430 . . . . . 6 (𝜑 → (𝐴𝑀) # 0)
2824, 27rerecclapd 8593 . . . . 5 (𝜑 → (1 / (𝐴𝑀)) ∈ ℝ)
299ltp1d 8688 . . . . 5 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) < ((((1 / 𝐴) − 1) · 𝑀) + 1))
30 0le1 8243 . . . . . . . . 9 0 ≤ 1
3130a1i 9 . . . . . . . 8 (𝜑 → 0 ≤ 1)
325, 12, 31divge0d 9524 . . . . . . 7 (𝜑 → 0 ≤ (1 / 𝐴))
33 bernneq2 10413 . . . . . . 7 (((1 / 𝐴) ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ 0 ≤ (1 / 𝐴)) → ((((1 / 𝐴) − 1) · 𝑀) + 1) ≤ ((1 / 𝐴)↑𝑀))
344, 23, 32, 33syl3anc 1216 . . . . . 6 (𝜑 → ((((1 / 𝐴) − 1) · 𝑀) + 1) ≤ ((1 / 𝐴)↑𝑀))
3525, 3, 26exprecapd 10432 . . . . . 6 (𝜑 → ((1 / 𝐴)↑𝑀) = (1 / (𝐴𝑀)))
3634, 35breqtrd 3954 . . . . 5 (𝜑 → ((((1 / 𝐴) − 1) · 𝑀) + 1) ≤ (1 / (𝐴𝑀)))
379, 22, 28, 29, 36ltletrd 8185 . . . 4 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) < (1 / (𝐴𝑀)))
3821, 37eqbrtrd 3950 . . 3 (𝜑 → (1 / (1 / (((1 / 𝐴) − 1) · 𝑀))) < (1 / (𝐴𝑀)))
3912, 26rpexpcld 10448 . . . 4 (𝜑 → (𝐴𝑀) ∈ ℝ+)
4019rpreccld 9494 . . . 4 (𝜑 → (1 / (((1 / 𝐴) − 1) · 𝑀)) ∈ ℝ+)
4139, 40ltrecd 9502 . . 3 (𝜑 → ((𝐴𝑀) < (1 / (((1 / 𝐴) − 1) · 𝑀)) ↔ (1 / (1 / (((1 / 𝐴) − 1) · 𝑀))) < (1 / (𝐴𝑀))))
4238, 41mpbird 166 . 2 (𝜑 → (𝐴𝑀) < (1 / (((1 / 𝐴) − 1) · 𝑀)))
436recnd 7794 . . 3 (𝜑 → ((1 / 𝐴) − 1) ∈ ℂ)
447nncnd 8734 . . 3 (𝜑𝑀 ∈ ℂ)
4517rpap0d 9489 . . 3 (𝜑 → ((1 / 𝐴) − 1) # 0)
4618rpap0d 9489 . . 3 (𝜑𝑀 # 0)
4743, 44, 45, 46recdivap2d 8568 . 2 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝑀) = (1 / (((1 / 𝐴) − 1) · 𝑀)))
4842, 47breqtrrd 3956 1 (𝜑 → (𝐴𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1480   class class class wbr 3929  (class class class)co 5774  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625   < clt 7800  cle 7801  cmin 7933   / cdiv 8432  cn 8720  0cn0 8977  cexp 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293
This theorem is referenced by:  cvgratnnlemfm  11298
  Copyright terms: Public domain W3C validator