ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlembern GIF version

Theorem cvgratnnlembern 11450
Description: Lemma for cvgratnn 11458. Upper bound for a geometric progression of positive ratio less than one. (Contributed by Jim Kingdon, 24-Nov-2022.)
Hypotheses
Ref Expression
cvgratnnlembern.3 (𝜑𝐴 ∈ ℝ)
cvgratnnlembern.4 (𝜑𝐴 < 1)
cvgratnnlembern.gt0 (𝜑 → 0 < 𝐴)
cvgratnnlembern.m (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
cvgratnnlembern (𝜑 → (𝐴𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀))

Proof of Theorem cvgratnnlembern
StepHypRef Expression
1 cvgratnnlembern.3 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
2 cvgratnnlembern.gt0 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
31, 2gt0ap0d 8518 . . . . . . . . 9 (𝜑𝐴 # 0)
41, 3rerecclapd 8721 . . . . . . . 8 (𝜑 → (1 / 𝐴) ∈ ℝ)
5 1red 7905 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
64, 5resubcld 8270 . . . . . . 7 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ)
7 cvgratnnlembern.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
87nnred 8861 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
96, 8remulcld 7920 . . . . . 6 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) ∈ ℝ)
109recnd 7918 . . . . 5 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) ∈ ℂ)
11 cvgratnnlembern.4 . . . . . . . . . 10 (𝜑𝐴 < 1)
121, 2elrpd 9620 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ+)
1312reclt1d 9637 . . . . . . . . . 10 (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
1411, 13mpbid 146 . . . . . . . . 9 (𝜑 → 1 < (1 / 𝐴))
155, 4posdifd 8421 . . . . . . . . 9 (𝜑 → (1 < (1 / 𝐴) ↔ 0 < ((1 / 𝐴) − 1)))
1614, 15mpbid 146 . . . . . . . 8 (𝜑 → 0 < ((1 / 𝐴) − 1))
176, 16elrpd 9620 . . . . . . 7 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ+)
187nnrpd 9621 . . . . . . 7 (𝜑𝑀 ∈ ℝ+)
1917, 18rpmulcld 9640 . . . . . 6 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) ∈ ℝ+)
2019rpap0d 9629 . . . . 5 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) # 0)
2110, 20recrecapd 8672 . . . 4 (𝜑 → (1 / (1 / (((1 / 𝐴) − 1) · 𝑀))) = (((1 / 𝐴) − 1) · 𝑀))
229, 5readdcld 7919 . . . . 5 (𝜑 → ((((1 / 𝐴) − 1) · 𝑀) + 1) ∈ ℝ)
237nnnn0d 9158 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
241, 23reexpcld 10594 . . . . . 6 (𝜑 → (𝐴𝑀) ∈ ℝ)
251recnd 7918 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
267nnzd 9303 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
2725, 3, 26expap0d 10583 . . . . . 6 (𝜑 → (𝐴𝑀) # 0)
2824, 27rerecclapd 8721 . . . . 5 (𝜑 → (1 / (𝐴𝑀)) ∈ ℝ)
299ltp1d 8816 . . . . 5 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) < ((((1 / 𝐴) − 1) · 𝑀) + 1))
30 0le1 8370 . . . . . . . . 9 0 ≤ 1
3130a1i 9 . . . . . . . 8 (𝜑 → 0 ≤ 1)
325, 12, 31divge0d 9664 . . . . . . 7 (𝜑 → 0 ≤ (1 / 𝐴))
33 bernneq2 10565 . . . . . . 7 (((1 / 𝐴) ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ 0 ≤ (1 / 𝐴)) → ((((1 / 𝐴) − 1) · 𝑀) + 1) ≤ ((1 / 𝐴)↑𝑀))
344, 23, 32, 33syl3anc 1227 . . . . . 6 (𝜑 → ((((1 / 𝐴) − 1) · 𝑀) + 1) ≤ ((1 / 𝐴)↑𝑀))
3525, 3, 26exprecapd 10585 . . . . . 6 (𝜑 → ((1 / 𝐴)↑𝑀) = (1 / (𝐴𝑀)))
3634, 35breqtrd 4002 . . . . 5 (𝜑 → ((((1 / 𝐴) − 1) · 𝑀) + 1) ≤ (1 / (𝐴𝑀)))
379, 22, 28, 29, 36ltletrd 8312 . . . 4 (𝜑 → (((1 / 𝐴) − 1) · 𝑀) < (1 / (𝐴𝑀)))
3821, 37eqbrtrd 3998 . . 3 (𝜑 → (1 / (1 / (((1 / 𝐴) − 1) · 𝑀))) < (1 / (𝐴𝑀)))
3912, 26rpexpcld 10601 . . . 4 (𝜑 → (𝐴𝑀) ∈ ℝ+)
4019rpreccld 9634 . . . 4 (𝜑 → (1 / (((1 / 𝐴) − 1) · 𝑀)) ∈ ℝ+)
4139, 40ltrecd 9642 . . 3 (𝜑 → ((𝐴𝑀) < (1 / (((1 / 𝐴) − 1) · 𝑀)) ↔ (1 / (1 / (((1 / 𝐴) − 1) · 𝑀))) < (1 / (𝐴𝑀))))
4238, 41mpbird 166 . 2 (𝜑 → (𝐴𝑀) < (1 / (((1 / 𝐴) − 1) · 𝑀)))
436recnd 7918 . . 3 (𝜑 → ((1 / 𝐴) − 1) ∈ ℂ)
447nncnd 8862 . . 3 (𝜑𝑀 ∈ ℂ)
4517rpap0d 9629 . . 3 (𝜑 → ((1 / 𝐴) − 1) # 0)
4618rpap0d 9629 . . 3 (𝜑𝑀 # 0)
4743, 44, 45, 46recdivap2d 8695 . 2 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝑀) = (1 / (((1 / 𝐴) − 1) · 𝑀)))
4842, 47breqtrrd 4004 1 (𝜑 → (𝐴𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2135   class class class wbr 3976  (class class class)co 5836  cr 7743  0cc0 7744  1c1 7745   + caddc 7747   · cmul 7749   < clt 7924  cle 7925  cmin 8060   / cdiv 8559  cn 8848  0cn0 9105  cexp 10444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-rp 9581  df-seqfrec 10371  df-exp 10445
This theorem is referenced by:  cvgratnnlemfm  11456
  Copyright terms: Public domain W3C validator