Proof of Theorem cvgratnnlembern
Step | Hyp | Ref
| Expression |
1 | | cvgratnnlembern.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | | cvgratnnlembern.gt0 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < 𝐴) |
3 | 1, 2 | gt0ap0d 8548 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 # 0) |
4 | 1, 3 | rerecclapd 8751 |
. . . . . . . 8
⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
5 | | 1red 7935 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
6 | 4, 5 | resubcld 8300 |
. . . . . . 7
⊢ (𝜑 → ((1 / 𝐴) − 1) ∈
ℝ) |
7 | | cvgratnnlembern.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℕ) |
8 | 7 | nnred 8891 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℝ) |
9 | 6, 8 | remulcld 7950 |
. . . . . 6
⊢ (𝜑 → (((1 / 𝐴) − 1) · 𝑀) ∈ ℝ) |
10 | 9 | recnd 7948 |
. . . . 5
⊢ (𝜑 → (((1 / 𝐴) − 1) · 𝑀) ∈ ℂ) |
11 | | cvgratnnlembern.4 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 < 1) |
12 | 1, 2 | elrpd 9650 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
13 | 12 | reclt1d 9667 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴))) |
14 | 11, 13 | mpbid 146 |
. . . . . . . . 9
⊢ (𝜑 → 1 < (1 / 𝐴)) |
15 | 5, 4 | posdifd 8451 |
. . . . . . . . 9
⊢ (𝜑 → (1 < (1 / 𝐴) ↔ 0 < ((1 / 𝐴) − 1))) |
16 | 14, 15 | mpbid 146 |
. . . . . . . 8
⊢ (𝜑 → 0 < ((1 / 𝐴) − 1)) |
17 | 6, 16 | elrpd 9650 |
. . . . . . 7
⊢ (𝜑 → ((1 / 𝐴) − 1) ∈
ℝ+) |
18 | 7 | nnrpd 9651 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℝ+) |
19 | 17, 18 | rpmulcld 9670 |
. . . . . 6
⊢ (𝜑 → (((1 / 𝐴) − 1) · 𝑀) ∈
ℝ+) |
20 | 19 | rpap0d 9659 |
. . . . 5
⊢ (𝜑 → (((1 / 𝐴) − 1) · 𝑀) # 0) |
21 | 10, 20 | recrecapd 8702 |
. . . 4
⊢ (𝜑 → (1 / (1 / (((1 / 𝐴) − 1) · 𝑀))) = (((1 / 𝐴) − 1) · 𝑀)) |
22 | 9, 5 | readdcld 7949 |
. . . . 5
⊢ (𝜑 → ((((1 / 𝐴) − 1) · 𝑀) + 1) ∈ ℝ) |
23 | 7 | nnnn0d 9188 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
24 | 1, 23 | reexpcld 10626 |
. . . . . 6
⊢ (𝜑 → (𝐴↑𝑀) ∈ ℝ) |
25 | 1 | recnd 7948 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℂ) |
26 | 7 | nnzd 9333 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
27 | 25, 3, 26 | expap0d 10615 |
. . . . . 6
⊢ (𝜑 → (𝐴↑𝑀) # 0) |
28 | 24, 27 | rerecclapd 8751 |
. . . . 5
⊢ (𝜑 → (1 / (𝐴↑𝑀)) ∈ ℝ) |
29 | 9 | ltp1d 8846 |
. . . . 5
⊢ (𝜑 → (((1 / 𝐴) − 1) · 𝑀) < ((((1 / 𝐴) − 1) · 𝑀) + 1)) |
30 | | 0le1 8400 |
. . . . . . . . 9
⊢ 0 ≤
1 |
31 | 30 | a1i 9 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 1) |
32 | 5, 12, 31 | divge0d 9694 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ (1 / 𝐴)) |
33 | | bernneq2 10597 |
. . . . . . 7
⊢ (((1 /
𝐴) ∈ ℝ ∧
𝑀 ∈
ℕ0 ∧ 0 ≤ (1 / 𝐴)) → ((((1 / 𝐴) − 1) · 𝑀) + 1) ≤ ((1 / 𝐴)↑𝑀)) |
34 | 4, 23, 32, 33 | syl3anc 1233 |
. . . . . 6
⊢ (𝜑 → ((((1 / 𝐴) − 1) · 𝑀) + 1) ≤ ((1 / 𝐴)↑𝑀)) |
35 | 25, 3, 26 | exprecapd 10617 |
. . . . . 6
⊢ (𝜑 → ((1 / 𝐴)↑𝑀) = (1 / (𝐴↑𝑀))) |
36 | 34, 35 | breqtrd 4015 |
. . . . 5
⊢ (𝜑 → ((((1 / 𝐴) − 1) · 𝑀) + 1) ≤ (1 / (𝐴↑𝑀))) |
37 | 9, 22, 28, 29, 36 | ltletrd 8342 |
. . . 4
⊢ (𝜑 → (((1 / 𝐴) − 1) · 𝑀) < (1 / (𝐴↑𝑀))) |
38 | 21, 37 | eqbrtrd 4011 |
. . 3
⊢ (𝜑 → (1 / (1 / (((1 / 𝐴) − 1) · 𝑀))) < (1 / (𝐴↑𝑀))) |
39 | 12, 26 | rpexpcld 10633 |
. . . 4
⊢ (𝜑 → (𝐴↑𝑀) ∈
ℝ+) |
40 | 19 | rpreccld 9664 |
. . . 4
⊢ (𝜑 → (1 / (((1 / 𝐴) − 1) · 𝑀)) ∈
ℝ+) |
41 | 39, 40 | ltrecd 9672 |
. . 3
⊢ (𝜑 → ((𝐴↑𝑀) < (1 / (((1 / 𝐴) − 1) · 𝑀)) ↔ (1 / (1 / (((1 / 𝐴) − 1) · 𝑀))) < (1 / (𝐴↑𝑀)))) |
42 | 38, 41 | mpbird 166 |
. 2
⊢ (𝜑 → (𝐴↑𝑀) < (1 / (((1 / 𝐴) − 1) · 𝑀))) |
43 | 6 | recnd 7948 |
. . 3
⊢ (𝜑 → ((1 / 𝐴) − 1) ∈
ℂ) |
44 | 7 | nncnd 8892 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℂ) |
45 | 17 | rpap0d 9659 |
. . 3
⊢ (𝜑 → ((1 / 𝐴) − 1) # 0) |
46 | 18 | rpap0d 9659 |
. . 3
⊢ (𝜑 → 𝑀 # 0) |
47 | 43, 44, 45, 46 | recdivap2d 8725 |
. 2
⊢ (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝑀) = (1 / (((1 / 𝐴) − 1) · 𝑀))) |
48 | 42, 47 | breqtrrd 4017 |
1
⊢ (𝜑 → (𝐴↑𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀)) |