ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgrex GIF version

Theorem upgrex 15888
Description: An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrex ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉   𝑥,𝐸   𝑥,𝐹   𝑥,𝐴,𝑦   𝑦,𝐸   𝑦,𝐹   𝑦,𝐺   𝑦,𝑉

Proof of Theorem upgrex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isupgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2upgr1or2 15886 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ((𝐸𝐹) ≈ 1o ∨ (𝐸𝐹) ≈ 2o))
4 en1 6941 . . . . . . 7 ((𝐸𝐹) ≈ 1o ↔ ∃𝑧(𝐸𝐹) = {𝑧})
5 dfsn2 3680 . . . . . . . . 9 {𝑧} = {𝑧, 𝑧}
65eqeq2i 2240 . . . . . . . 8 ((𝐸𝐹) = {𝑧} ↔ (𝐸𝐹) = {𝑧, 𝑧})
76exbii 1651 . . . . . . 7 (∃𝑧(𝐸𝐹) = {𝑧} ↔ ∃𝑧(𝐸𝐹) = {𝑧, 𝑧})
84, 7bitri 184 . . . . . 6 ((𝐸𝐹) ≈ 1o ↔ ∃𝑧(𝐸𝐹) = {𝑧, 𝑧})
9 preq2 3744 . . . . . . . . . . 11 (𝑦 = 𝑧 → {𝑧, 𝑦} = {𝑧, 𝑧})
109eqeq2d 2241 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐸𝐹) = {𝑧, 𝑦} ↔ (𝐸𝐹) = {𝑧, 𝑧}))
1110spcegv 2891 . . . . . . . . 9 (𝑧 ∈ V → ((𝐸𝐹) = {𝑧, 𝑧} → ∃𝑦(𝐸𝐹) = {𝑧, 𝑦}))
1211elv 2803 . . . . . . . 8 ((𝐸𝐹) = {𝑧, 𝑧} → ∃𝑦(𝐸𝐹) = {𝑧, 𝑦})
13 preq1 3743 . . . . . . . . . . . 12 (𝑥 = 𝑧 → {𝑥, 𝑦} = {𝑧, 𝑦})
1413eqeq2d 2241 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝐸𝐹) = {𝑥, 𝑦} ↔ (𝐸𝐹) = {𝑧, 𝑦}))
1514exbidv 1871 . . . . . . . . . 10 (𝑥 = 𝑧 → (∃𝑦(𝐸𝐹) = {𝑥, 𝑦} ↔ ∃𝑦(𝐸𝐹) = {𝑧, 𝑦}))
1615spcegv 2891 . . . . . . . . 9 (𝑧 ∈ V → (∃𝑦(𝐸𝐹) = {𝑧, 𝑦} → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦}))
1716elv 2803 . . . . . . . 8 (∃𝑦(𝐸𝐹) = {𝑧, 𝑦} → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
1812, 17syl 14 . . . . . . 7 ((𝐸𝐹) = {𝑧, 𝑧} → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
1918exlimiv 1644 . . . . . 6 (∃𝑧(𝐸𝐹) = {𝑧, 𝑧} → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
208, 19sylbi 121 . . . . 5 ((𝐸𝐹) ≈ 1o → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
21 en2 6963 . . . . 5 ((𝐸𝐹) ≈ 2o → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
2220, 21jaoi 721 . . . 4 (((𝐸𝐹) ≈ 1o ∨ (𝐸𝐹) ≈ 2o) → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
233, 22syl 14 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
24 simp1 1021 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐺 ∈ UPGraph)
25 simp3 1023 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐹𝐴)
26 fndm 5416 . . . . . . . . . . 11 (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴)
27263ad2ant2 1043 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → dom 𝐸 = 𝐴)
2825, 27eleqtrrd 2309 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐹 ∈ dom 𝐸)
291, 2upgrss 15884 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)
3024, 28, 29syl2anc 411 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ⊆ 𝑉)
3130adantr 276 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → (𝐸𝐹) ⊆ 𝑉)
32 vex 2802 . . . . . . . . 9 𝑥 ∈ V
3332prid1 3772 . . . . . . . 8 𝑥 ∈ {𝑥, 𝑦}
34 simpr 110 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → (𝐸𝐹) = {𝑥, 𝑦})
3533, 34eleqtrrid 2319 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → 𝑥 ∈ (𝐸𝐹))
3631, 35sseldd 3225 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → 𝑥𝑉)
37 vex 2802 . . . . . . . . 9 𝑦 ∈ V
3837prid2 3773 . . . . . . . 8 𝑦 ∈ {𝑥, 𝑦}
3938, 34eleqtrrid 2319 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → 𝑦 ∈ (𝐸𝐹))
4031, 39sseldd 3225 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → 𝑦𝑉)
4136, 40, 34jca31 309 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → ((𝑥𝑉𝑦𝑉) ∧ (𝐸𝐹) = {𝑥, 𝑦}))
4241ex 115 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ((𝐸𝐹) = {𝑥, 𝑦} → ((𝑥𝑉𝑦𝑉) ∧ (𝐸𝐹) = {𝑥, 𝑦})))
43422eximdv 1928 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦} → ∃𝑥𝑦((𝑥𝑉𝑦𝑉) ∧ (𝐸𝐹) = {𝑥, 𝑦})))
4423, 43mpd 13 . 2 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑦((𝑥𝑉𝑦𝑉) ∧ (𝐸𝐹) = {𝑥, 𝑦}))
45 r2ex 2550 . 2 (∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦} ↔ ∃𝑥𝑦((𝑥𝑉𝑦𝑉) ∧ (𝐸𝐹) = {𝑥, 𝑦}))
4644, 45sylibr 134 1 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wrex 2509  Vcvv 2799  wss 3197  {csn 3666  {cpr 3667   class class class wbr 4082  dom cdm 4716   Fn wfn 5309  cfv 5314  1oc1o 6545  2oc2o 6546  cen 6875  Vtxcvtx 15798  iEdgciedg 15799  UPGraphcupgr 15876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-suc 4459  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-1o 6552  df-2o 6553  df-en 6878  df-sub 8307  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-dec 9567  df-ndx 13021  df-slot 13022  df-base 13024  df-edgf 15791  df-vtx 15800  df-iedg 15801  df-upgren 15878
This theorem is referenced by:  upgredg  15927
  Copyright terms: Public domain W3C validator