ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgrex GIF version

Theorem upgrex 15911
Description: An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrex ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉   𝑥,𝐸   𝑥,𝐹   𝑥,𝐴,𝑦   𝑦,𝐸   𝑦,𝐹   𝑦,𝐺   𝑦,𝑉

Proof of Theorem upgrex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isupgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2upgr1or2 15909 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ((𝐸𝐹) ≈ 1o ∨ (𝐸𝐹) ≈ 2o))
4 en1 6959 . . . . . . 7 ((𝐸𝐹) ≈ 1o ↔ ∃𝑧(𝐸𝐹) = {𝑧})
5 dfsn2 3680 . . . . . . . . 9 {𝑧} = {𝑧, 𝑧}
65eqeq2i 2240 . . . . . . . 8 ((𝐸𝐹) = {𝑧} ↔ (𝐸𝐹) = {𝑧, 𝑧})
76exbii 1651 . . . . . . 7 (∃𝑧(𝐸𝐹) = {𝑧} ↔ ∃𝑧(𝐸𝐹) = {𝑧, 𝑧})
84, 7bitri 184 . . . . . 6 ((𝐸𝐹) ≈ 1o ↔ ∃𝑧(𝐸𝐹) = {𝑧, 𝑧})
9 preq2 3744 . . . . . . . . . . 11 (𝑦 = 𝑧 → {𝑧, 𝑦} = {𝑧, 𝑧})
109eqeq2d 2241 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐸𝐹) = {𝑧, 𝑦} ↔ (𝐸𝐹) = {𝑧, 𝑧}))
1110spcegv 2891 . . . . . . . . 9 (𝑧 ∈ V → ((𝐸𝐹) = {𝑧, 𝑧} → ∃𝑦(𝐸𝐹) = {𝑧, 𝑦}))
1211elv 2803 . . . . . . . 8 ((𝐸𝐹) = {𝑧, 𝑧} → ∃𝑦(𝐸𝐹) = {𝑧, 𝑦})
13 preq1 3743 . . . . . . . . . . . 12 (𝑥 = 𝑧 → {𝑥, 𝑦} = {𝑧, 𝑦})
1413eqeq2d 2241 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝐸𝐹) = {𝑥, 𝑦} ↔ (𝐸𝐹) = {𝑧, 𝑦}))
1514exbidv 1871 . . . . . . . . . 10 (𝑥 = 𝑧 → (∃𝑦(𝐸𝐹) = {𝑥, 𝑦} ↔ ∃𝑦(𝐸𝐹) = {𝑧, 𝑦}))
1615spcegv 2891 . . . . . . . . 9 (𝑧 ∈ V → (∃𝑦(𝐸𝐹) = {𝑧, 𝑦} → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦}))
1716elv 2803 . . . . . . . 8 (∃𝑦(𝐸𝐹) = {𝑧, 𝑦} → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
1812, 17syl 14 . . . . . . 7 ((𝐸𝐹) = {𝑧, 𝑧} → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
1918exlimiv 1644 . . . . . 6 (∃𝑧(𝐸𝐹) = {𝑧, 𝑧} → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
208, 19sylbi 121 . . . . 5 ((𝐸𝐹) ≈ 1o → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
21 en2 6981 . . . . 5 ((𝐸𝐹) ≈ 2o → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
2220, 21jaoi 721 . . . 4 (((𝐸𝐹) ≈ 1o ∨ (𝐸𝐹) ≈ 2o) → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
233, 22syl 14 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
24 simp1 1021 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐺 ∈ UPGraph)
25 simp3 1023 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐹𝐴)
26 fndm 5420 . . . . . . . . . . 11 (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴)
27263ad2ant2 1043 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → dom 𝐸 = 𝐴)
2825, 27eleqtrrd 2309 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐹 ∈ dom 𝐸)
291, 2upgrss 15907 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)
3024, 28, 29syl2anc 411 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ⊆ 𝑉)
3130adantr 276 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → (𝐸𝐹) ⊆ 𝑉)
32 vex 2802 . . . . . . . . 9 𝑥 ∈ V
3332prid1 3772 . . . . . . . 8 𝑥 ∈ {𝑥, 𝑦}
34 simpr 110 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → (𝐸𝐹) = {𝑥, 𝑦})
3533, 34eleqtrrid 2319 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → 𝑥 ∈ (𝐸𝐹))
3631, 35sseldd 3225 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → 𝑥𝑉)
37 vex 2802 . . . . . . . . 9 𝑦 ∈ V
3837prid2 3773 . . . . . . . 8 𝑦 ∈ {𝑥, 𝑦}
3938, 34eleqtrrid 2319 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → 𝑦 ∈ (𝐸𝐹))
4031, 39sseldd 3225 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → 𝑦𝑉)
4136, 40, 34jca31 309 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → ((𝑥𝑉𝑦𝑉) ∧ (𝐸𝐹) = {𝑥, 𝑦}))
4241ex 115 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ((𝐸𝐹) = {𝑥, 𝑦} → ((𝑥𝑉𝑦𝑉) ∧ (𝐸𝐹) = {𝑥, 𝑦})))
43422eximdv 1928 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦} → ∃𝑥𝑦((𝑥𝑉𝑦𝑉) ∧ (𝐸𝐹) = {𝑥, 𝑦})))
4423, 43mpd 13 . 2 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑦((𝑥𝑉𝑦𝑉) ∧ (𝐸𝐹) = {𝑥, 𝑦}))
45 r2ex 2550 . 2 (∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦} ↔ ∃𝑥𝑦((𝑥𝑉𝑦𝑉) ∧ (𝐸𝐹) = {𝑥, 𝑦}))
4644, 45sylibr 134 1 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wrex 2509  Vcvv 2799  wss 3197  {csn 3666  {cpr 3667   class class class wbr 4083  dom cdm 4719   Fn wfn 5313  cfv 5318  1oc1o 6561  2oc2o 6562  cen 6893  Vtxcvtx 15821  iEdgciedg 15822  UPGraphcupgr 15899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-1o 6568  df-2o 6569  df-en 6896  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-upgren 15901
This theorem is referenced by:  upgredg  15950
  Copyright terms: Public domain W3C validator