ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgrex GIF version

Theorem upgrex 15749
Description: An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrex ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉   𝑥,𝐸   𝑥,𝐹   𝑥,𝐴,𝑦   𝑦,𝐸   𝑦,𝐹   𝑦,𝐺   𝑦,𝑉

Proof of Theorem upgrex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isupgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2upgr1or2 15747 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ((𝐸𝐹) ≈ 1o ∨ (𝐸𝐹) ≈ 2o))
4 en1 6901 . . . . . . 7 ((𝐸𝐹) ≈ 1o ↔ ∃𝑧(𝐸𝐹) = {𝑧})
5 dfsn2 3649 . . . . . . . . 9 {𝑧} = {𝑧, 𝑧}
65eqeq2i 2217 . . . . . . . 8 ((𝐸𝐹) = {𝑧} ↔ (𝐸𝐹) = {𝑧, 𝑧})
76exbii 1629 . . . . . . 7 (∃𝑧(𝐸𝐹) = {𝑧} ↔ ∃𝑧(𝐸𝐹) = {𝑧, 𝑧})
84, 7bitri 184 . . . . . 6 ((𝐸𝐹) ≈ 1o ↔ ∃𝑧(𝐸𝐹) = {𝑧, 𝑧})
9 preq2 3713 . . . . . . . . . . 11 (𝑦 = 𝑧 → {𝑧, 𝑦} = {𝑧, 𝑧})
109eqeq2d 2218 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐸𝐹) = {𝑧, 𝑦} ↔ (𝐸𝐹) = {𝑧, 𝑧}))
1110spcegv 2863 . . . . . . . . 9 (𝑧 ∈ V → ((𝐸𝐹) = {𝑧, 𝑧} → ∃𝑦(𝐸𝐹) = {𝑧, 𝑦}))
1211elv 2777 . . . . . . . 8 ((𝐸𝐹) = {𝑧, 𝑧} → ∃𝑦(𝐸𝐹) = {𝑧, 𝑦})
13 preq1 3712 . . . . . . . . . . . 12 (𝑥 = 𝑧 → {𝑥, 𝑦} = {𝑧, 𝑦})
1413eqeq2d 2218 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝐸𝐹) = {𝑥, 𝑦} ↔ (𝐸𝐹) = {𝑧, 𝑦}))
1514exbidv 1849 . . . . . . . . . 10 (𝑥 = 𝑧 → (∃𝑦(𝐸𝐹) = {𝑥, 𝑦} ↔ ∃𝑦(𝐸𝐹) = {𝑧, 𝑦}))
1615spcegv 2863 . . . . . . . . 9 (𝑧 ∈ V → (∃𝑦(𝐸𝐹) = {𝑧, 𝑦} → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦}))
1716elv 2777 . . . . . . . 8 (∃𝑦(𝐸𝐹) = {𝑧, 𝑦} → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
1812, 17syl 14 . . . . . . 7 ((𝐸𝐹) = {𝑧, 𝑧} → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
1918exlimiv 1622 . . . . . 6 (∃𝑧(𝐸𝐹) = {𝑧, 𝑧} → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
208, 19sylbi 121 . . . . 5 ((𝐸𝐹) ≈ 1o → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
21 en2 6923 . . . . 5 ((𝐸𝐹) ≈ 2o → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
2220, 21jaoi 718 . . . 4 (((𝐸𝐹) ≈ 1o ∨ (𝐸𝐹) ≈ 2o) → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
233, 22syl 14 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦})
24 simp1 1000 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐺 ∈ UPGraph)
25 simp3 1002 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐹𝐴)
26 fndm 5379 . . . . . . . . . . 11 (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴)
27263ad2ant2 1022 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → dom 𝐸 = 𝐴)
2825, 27eleqtrrd 2286 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐹 ∈ dom 𝐸)
291, 2upgrss 15745 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)
3024, 28, 29syl2anc 411 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ⊆ 𝑉)
3130adantr 276 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → (𝐸𝐹) ⊆ 𝑉)
32 vex 2776 . . . . . . . . 9 𝑥 ∈ V
3332prid1 3741 . . . . . . . 8 𝑥 ∈ {𝑥, 𝑦}
34 simpr 110 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → (𝐸𝐹) = {𝑥, 𝑦})
3533, 34eleqtrrid 2296 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → 𝑥 ∈ (𝐸𝐹))
3631, 35sseldd 3196 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → 𝑥𝑉)
37 vex 2776 . . . . . . . . 9 𝑦 ∈ V
3837prid2 3742 . . . . . . . 8 𝑦 ∈ {𝑥, 𝑦}
3938, 34eleqtrrid 2296 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → 𝑦 ∈ (𝐸𝐹))
4031, 39sseldd 3196 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → 𝑦𝑉)
4136, 40, 34jca31 309 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝐸𝐹) = {𝑥, 𝑦}) → ((𝑥𝑉𝑦𝑉) ∧ (𝐸𝐹) = {𝑥, 𝑦}))
4241ex 115 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ((𝐸𝐹) = {𝑥, 𝑦} → ((𝑥𝑉𝑦𝑉) ∧ (𝐸𝐹) = {𝑥, 𝑦})))
43422eximdv 1906 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (∃𝑥𝑦(𝐸𝐹) = {𝑥, 𝑦} → ∃𝑥𝑦((𝑥𝑉𝑦𝑉) ∧ (𝐸𝐹) = {𝑥, 𝑦})))
4423, 43mpd 13 . 2 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑦((𝑥𝑉𝑦𝑉) ∧ (𝐸𝐹) = {𝑥, 𝑦}))
45 r2ex 2527 . 2 (∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦} ↔ ∃𝑥𝑦((𝑥𝑉𝑦𝑉) ∧ (𝐸𝐹) = {𝑥, 𝑦}))
4644, 45sylibr 134 1 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  w3a 981   = wceq 1373  wex 1516  wcel 2177  wrex 2486  Vcvv 2773  wss 3168  {csn 3635  {cpr 3636   class class class wbr 4048  dom cdm 4680   Fn wfn 5272  cfv 5277  1oc1o 6505  2oc2o 6506  cen 6835  Vtxcvtx 15661  iEdgciedg 15662  UPGraphcupgr 15737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-1o 6512  df-2o 6513  df-en 6838  df-sub 8258  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-9 9115  df-n0 9309  df-dec 9518  df-ndx 12885  df-slot 12886  df-base 12888  df-edgf 15654  df-vtx 15663  df-iedg 15664  df-upgren 15739
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator