![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zndvds0 | GIF version |
Description: Special case of zndvds 14148 when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
zncyg.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
zndvds.2 | ⊢ 𝐿 = (ℤRHom‘𝑌) |
zndvds0.3 | ⊢ 0 = (0g‘𝑌) |
Ref | Expression |
---|---|
zndvds0 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = 0 ↔ 𝑁 ∥ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9331 | . . 3 ⊢ 0 ∈ ℤ | |
2 | zncyg.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
3 | zndvds.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
4 | 2, 3 | zndvds 14148 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘0) ↔ 𝑁 ∥ (𝐴 − 0))) |
5 | 1, 4 | mp3an3 1337 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘0) ↔ 𝑁 ∥ (𝐴 − 0))) |
6 | 2 | zncrng 14144 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) |
7 | 6 | adantr 276 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝑌 ∈ CRing) |
8 | crngring 13507 | . . . . 5 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
9 | 3 | zrhrhm 14122 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌)) |
10 | 7, 8, 9 | 3syl 17 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐿 ∈ (ℤring RingHom 𝑌)) |
11 | rhmghm 13661 | . . . 4 ⊢ (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (ℤring GrpHom 𝑌)) | |
12 | zring0 14099 | . . . . 5 ⊢ 0 = (0g‘ℤring) | |
13 | zndvds0.3 | . . . . 5 ⊢ 0 = (0g‘𝑌) | |
14 | 12, 13 | ghmid 13322 | . . . 4 ⊢ (𝐿 ∈ (ℤring GrpHom 𝑌) → (𝐿‘0) = 0 ) |
15 | 10, 11, 14 | 3syl 17 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘0) = 0 ) |
16 | 15 | eqeq2d 2205 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘0) ↔ (𝐿‘𝐴) = 0 )) |
17 | simpr 110 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ) | |
18 | 17 | zcnd 9443 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ) |
19 | 18 | subid1d 8321 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐴 − 0) = 𝐴) |
20 | 19 | breq2d 4042 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝑁 ∥ (𝐴 − 0) ↔ 𝑁 ∥ 𝐴)) |
21 | 5, 16, 20 | 3bitr3d 218 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = 0 ↔ 𝑁 ∥ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 0cc0 7874 − cmin 8192 ℕ0cn0 9243 ℤcz 9320 ∥ cdvds 11933 0gc0g 12870 GrpHom cghm 13313 Ringcrg 13495 CRingccrg 13496 RingHom crh 13649 ℤringczring 14089 ℤRHomczrh 14110 ℤ/nℤczn 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-addf 7996 ax-mulf 7997 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-tp 3627 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-tpos 6300 df-recs 6360 df-frec 6446 df-er 6589 df-ec 6591 df-qs 6595 df-map 6706 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-dec 9452 df-uz 9596 df-rp 9723 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-cj 10989 df-abs 11146 df-dvds 11934 df-struct 12623 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-starv 12713 df-sca 12714 df-vsca 12715 df-ip 12716 df-tset 12717 df-ple 12718 df-ds 12720 df-unif 12721 df-0g 12872 df-topgen 12874 df-iimas 12888 df-qus 12889 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-mhm 13034 df-grp 13078 df-minusg 13079 df-sbg 13080 df-mulg 13193 df-subg 13243 df-nsg 13244 df-eqg 13245 df-ghm 13314 df-cmn 13359 df-abl 13360 df-mgp 13420 df-rng 13432 df-ur 13459 df-srg 13463 df-ring 13497 df-cring 13498 df-oppr 13567 df-dvdsr 13588 df-rhm 13651 df-subrg 13718 df-lmod 13788 df-lssm 13852 df-lsp 13886 df-sra 13934 df-rgmod 13935 df-lidl 13968 df-rsp 13969 df-2idl 13999 df-bl 14045 df-mopn 14046 df-fg 14048 df-metu 14049 df-cnfld 14056 df-zring 14090 df-zrh 14113 df-zn 14115 |
This theorem is referenced by: znidom 14156 znidomb 14157 znrrg 14159 |
Copyright terms: Public domain | W3C validator |