| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zndvds0 | GIF version | ||
| Description: Special case of zndvds 14215 when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| zncyg.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| zndvds.2 | ⊢ 𝐿 = (ℤRHom‘𝑌) |
| zndvds0.3 | ⊢ 0 = (0g‘𝑌) |
| Ref | Expression |
|---|---|
| zndvds0 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = 0 ↔ 𝑁 ∥ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9339 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | zncyg.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 3 | zndvds.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
| 4 | 2, 3 | zndvds 14215 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘0) ↔ 𝑁 ∥ (𝐴 − 0))) |
| 5 | 1, 4 | mp3an3 1337 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘0) ↔ 𝑁 ∥ (𝐴 − 0))) |
| 6 | 2 | zncrng 14211 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) |
| 7 | 6 | adantr 276 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝑌 ∈ CRing) |
| 8 | crngring 13574 | . . . . 5 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
| 9 | 3 | zrhrhm 14189 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌)) |
| 10 | 7, 8, 9 | 3syl 17 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐿 ∈ (ℤring RingHom 𝑌)) |
| 11 | rhmghm 13728 | . . . 4 ⊢ (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (ℤring GrpHom 𝑌)) | |
| 12 | zring0 14166 | . . . . 5 ⊢ 0 = (0g‘ℤring) | |
| 13 | zndvds0.3 | . . . . 5 ⊢ 0 = (0g‘𝑌) | |
| 14 | 12, 13 | ghmid 13389 | . . . 4 ⊢ (𝐿 ∈ (ℤring GrpHom 𝑌) → (𝐿‘0) = 0 ) |
| 15 | 10, 11, 14 | 3syl 17 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘0) = 0 ) |
| 16 | 15 | eqeq2d 2208 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘0) ↔ (𝐿‘𝐴) = 0 )) |
| 17 | simpr 110 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ) | |
| 18 | 17 | zcnd 9451 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ) |
| 19 | 18 | subid1d 8328 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐴 − 0) = 𝐴) |
| 20 | 19 | breq2d 4046 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝑁 ∥ (𝐴 − 0) ↔ 𝑁 ∥ 𝐴)) |
| 21 | 5, 16, 20 | 3bitr3d 218 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = 0 ↔ 𝑁 ∥ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 (class class class)co 5923 0cc0 7881 − cmin 8199 ℕ0cn0 9251 ℤcz 9328 ∥ cdvds 11954 0gc0g 12937 GrpHom cghm 13380 Ringcrg 13562 CRingccrg 13563 RingHom crh 13716 ℤringczring 14156 ℤRHomczrh 14177 ℤ/nℤczn 14179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulrcl 7980 ax-addcom 7981 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-1rid 7988 ax-0id 7989 ax-rnegex 7990 ax-precex 7991 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 ax-pre-mulgt0 7998 ax-addf 8003 ax-mulf 8004 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-tpos 6304 df-recs 6364 df-frec 6450 df-er 6593 df-ec 6595 df-qs 6599 df-map 6710 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-reap 8604 df-inn 8993 df-2 9051 df-3 9052 df-4 9053 df-5 9054 df-6 9055 df-7 9056 df-8 9057 df-9 9058 df-n0 9252 df-z 9329 df-dec 9460 df-uz 9604 df-rp 9731 df-fz 10086 df-fzo 10220 df-seqfrec 10542 df-cj 11009 df-abs 11166 df-dvds 11955 df-struct 12690 df-ndx 12691 df-slot 12692 df-base 12694 df-sets 12695 df-iress 12696 df-plusg 12778 df-mulr 12779 df-starv 12780 df-sca 12781 df-vsca 12782 df-ip 12783 df-tset 12784 df-ple 12785 df-ds 12787 df-unif 12788 df-0g 12939 df-topgen 12941 df-iimas 12955 df-qus 12956 df-mgm 13009 df-sgrp 13055 df-mnd 13068 df-mhm 13101 df-grp 13145 df-minusg 13146 df-sbg 13147 df-mulg 13260 df-subg 13310 df-nsg 13311 df-eqg 13312 df-ghm 13381 df-cmn 13426 df-abl 13427 df-mgp 13487 df-rng 13499 df-ur 13526 df-srg 13530 df-ring 13564 df-cring 13565 df-oppr 13634 df-dvdsr 13655 df-rhm 13718 df-subrg 13785 df-lmod 13855 df-lssm 13919 df-lsp 13953 df-sra 14001 df-rgmod 14002 df-lidl 14035 df-rsp 14036 df-2idl 14066 df-bl 14112 df-mopn 14113 df-fg 14115 df-metu 14116 df-cnfld 14123 df-zring 14157 df-zrh 14180 df-zn 14182 |
| This theorem is referenced by: znidom 14223 znidomb 14224 znrrg 14226 |
| Copyright terms: Public domain | W3C validator |