ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zndvds0 GIF version

Theorem zndvds0 14284
Description: Special case of zndvds 14283 when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
zncyg.y 𝑌 = (ℤ/nℤ‘𝑁)
zndvds.2 𝐿 = (ℤRHom‘𝑌)
zndvds0.3 0 = (0g𝑌)
Assertion
Ref Expression
zndvds0 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) = 0𝑁𝐴))

Proof of Theorem zndvds0
StepHypRef Expression
1 0z 9356 . . 3 0 ∈ ℤ
2 zncyg.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
3 zndvds.2 . . . 4 𝐿 = (ℤRHom‘𝑌)
42, 3zndvds 14283 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐿𝐴) = (𝐿‘0) ↔ 𝑁 ∥ (𝐴 − 0)))
51, 4mp3an3 1337 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) = (𝐿‘0) ↔ 𝑁 ∥ (𝐴 − 0)))
62zncrng 14279 . . . . . 6 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
76adantr 276 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝑌 ∈ CRing)
8 crngring 13642 . . . . 5 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
93zrhrhm 14257 . . . . 5 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
107, 8, 93syl 17 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐿 ∈ (ℤring RingHom 𝑌))
11 rhmghm 13796 . . . 4 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (ℤring GrpHom 𝑌))
12 zring0 14234 . . . . 5 0 = (0g‘ℤring)
13 zndvds0.3 . . . . 5 0 = (0g𝑌)
1412, 13ghmid 13457 . . . 4 (𝐿 ∈ (ℤring GrpHom 𝑌) → (𝐿‘0) = 0 )
1510, 11, 143syl 17 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐿‘0) = 0 )
1615eqeq2d 2208 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) = (𝐿‘0) ↔ (𝐿𝐴) = 0 ))
17 simpr 110 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
1817zcnd 9468 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐴 ∈ ℂ)
1918subid1d 8345 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐴 − 0) = 𝐴)
2019breq2d 4046 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝑁 ∥ (𝐴 − 0) ↔ 𝑁𝐴))
215, 16, 203bitr3d 218 1 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) = 0𝑁𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5925  0cc0 7898  cmin 8216  0cn0 9268  cz 9345  cdvds 11971  0gc0g 12960   GrpHom cghm 13448  Ringcrg 13630  CRingccrg 13631   RingHom crh 13784  ringczring 14224  ℤRHomczrh 14245  ℤ/nczn 14247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-addf 8020  ax-mulf 8021
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-recs 6372  df-frec 6458  df-er 6601  df-ec 6603  df-qs 6607  df-map 6718  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-dec 9477  df-uz 9621  df-rp 9748  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-cj 11026  df-abs 11183  df-dvds 11972  df-struct 12707  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-starv 12797  df-sca 12798  df-vsca 12799  df-ip 12800  df-tset 12801  df-ple 12802  df-ds 12804  df-unif 12805  df-0g 12962  df-topgen 12964  df-iimas 13006  df-qus 13007  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-mhm 13163  df-grp 13207  df-minusg 13208  df-sbg 13209  df-mulg 13328  df-subg 13378  df-nsg 13379  df-eqg 13380  df-ghm 13449  df-cmn 13494  df-abl 13495  df-mgp 13555  df-rng 13567  df-ur 13594  df-srg 13598  df-ring 13632  df-cring 13633  df-oppr 13702  df-dvdsr 13723  df-rhm 13786  df-subrg 13853  df-lmod 13923  df-lssm 13987  df-lsp 14021  df-sra 14069  df-rgmod 14070  df-lidl 14103  df-rsp 14104  df-2idl 14134  df-bl 14180  df-mopn 14181  df-fg 14183  df-metu 14184  df-cnfld 14191  df-zring 14225  df-zrh 14248  df-zn 14250
This theorem is referenced by:  znidom  14291  znidomb  14292  znrrg  14294
  Copyright terms: Public domain W3C validator