Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzelz | GIF version |
Description: A member of a finite set of sequential integer is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzelz | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 9952 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
2 | eluzelz 9471 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ‘cfv 5187 (class class class)co 5841 ℤcz 9187 ℤ≥cuz 9462 ...cfz 9940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-fv 5195 df-ov 5844 df-oprab 5845 df-mpo 5846 df-neg 8068 df-z 9188 df-uz 9463 df-fz 9941 |
This theorem is referenced by: elfzelzd 9957 elfz1eq 9966 fzsplit2 9981 fzdisj 9983 elfznn 9985 fznatpl1 10007 fzdifsuc 10012 fzrev2i 10017 fzrev3i 10019 elfzp12 10030 fznuz 10033 fzrevral 10036 fzshftral 10039 fznn0sub2 10059 elfzmlbm 10062 difelfznle 10066 fzosplit 10108 ser3mono 10409 iseqf1olemkle 10415 iseqf1olemklt 10416 iseqf1olemqcl 10417 iseqf1olemnab 10419 iseqf1olemab 10420 iseqf1olemmo 10423 iseqf1olemqk 10425 seq3f1olemqsumkj 10429 seq3f1olemqsumk 10430 seq3f1olemqsum 10431 seq3f1olemstep 10432 bcval2 10659 bcval4 10661 bccmpl 10663 bcp1nk 10671 bcpasc 10675 bccl2 10677 zfz1isolemiso 10748 seq3coll 10751 seq3shft 10776 sumrbdclem 11314 summodclem2a 11318 fsum0diaglem 11377 fisum0diag 11378 mptfzshft 11379 fsumrev 11380 fsumshft 11381 fsumshftm 11382 fisum0diag2 11384 binomlem 11420 binom11 11423 bcxmas 11426 arisum 11435 geo2sum 11451 cvgratnnlemabsle 11464 cvgratnnlemrate 11467 mertenslemub 11471 mertenslemi1 11472 prodfap0 11482 prodrbdclem 11508 prodmodclem2a 11513 fprodntrivap 11521 fprodm1 11535 fprod1p 11536 fprodfac 11552 fprodeq0 11554 fprodshft 11555 fprodrev 11556 fprod0diagfz 11565 fzm1ndvds 11790 zsupssdc 11883 lcmval 11991 lcmcllem 11995 lcmledvds 11998 prmdc 12058 prmdvdsfz 12067 isprm5lem 12069 phivalfi 12140 hashdvds 12149 phiprmpw 12150 eulerthlemrprm 12157 eulerthlema 12158 prmdiveq 12164 prmdivdiv 12165 modprminv 12177 modprminveq 12178 modprm0 12182 pcfac 12276 lgsval2lem 13511 lgsdilem2 13537 trilpolemlt1 13880 supfz 13907 inffz 13908 |
Copyright terms: Public domain | W3C validator |