![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzelz | GIF version |
Description: A member of a finite set of sequential integer is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzelz | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 9426 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
2 | eluzelz 9018 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1438 ‘cfv 5010 (class class class)co 5644 ℤcz 8740 ℤ≥cuz 9009 ...cfz 9414 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3955 ax-pow 4007 ax-pr 4034 ax-setind 4351 ax-cnex 7426 ax-resscn 7427 |
This theorem depends on definitions: df-bi 115 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3429 df-sn 3450 df-pr 3451 df-op 3453 df-uni 3652 df-br 3844 df-opab 3898 df-mpt 3899 df-id 4118 df-xp 4442 df-rel 4443 df-cnv 4444 df-co 4445 df-dm 4446 df-rn 4447 df-res 4448 df-ima 4449 df-iota 4975 df-fun 5012 df-fn 5013 df-f 5014 df-fv 5018 df-ov 5647 df-oprab 5648 df-mpt2 5649 df-neg 7646 df-z 8741 df-uz 9010 df-fz 9415 |
This theorem is referenced by: elfz1eq 9439 fzsplit2 9454 fzdisj 9456 elfznn 9458 fznatpl1 9478 fzdifsuc 9483 fzrev2i 9488 fzrev3i 9490 elfzp12 9501 fznuz 9504 fzrevral 9507 fzshftral 9510 fznn0sub2 9527 elfzmlbm 9530 difelfznle 9534 fzosplit 9576 isermono 9894 iseqf1olemkle 9901 iseqf1olemklt 9902 iseqf1olemqcl 9903 iseqf1olemnab 9905 iseqf1olemab 9906 iseqf1olemmo 9909 iseqf1olemqk 9911 seq3f1olemqsumkj 9915 seq3f1olemqsumk 9916 seq3f1olemqsum 9917 seq3f1olemstep 9918 bcval2 10146 bcval4 10148 bccmpl 10150 bcp1nk 10158 bcpasc 10162 bccl2 10164 zfz1isolemiso 10232 iseqcoll 10235 seq3shft 10260 isumrblem 10752 isummolem2a 10758 fsum0diaglem 10821 fisum0diag 10822 mptfzshft 10823 fsumrev 10824 fsumshft 10825 fsumshftm 10826 fisum0diag2 10828 binomlem 10864 binom11 10867 bcxmas 10870 arisum 10879 geo2sum 10895 cvgratnnlemabsle 10908 cvgratnnlemrate 10911 mertenslemub 10915 mertenslemi1 10916 fzm1ndvds 11122 lcmval 11310 lcmcllem 11314 lcmledvds 11317 prmdvdsfz 11385 phivalfi 11453 hashdvds 11462 phiprmpw 11463 supfz 11799 inffz 11800 |
Copyright terms: Public domain | W3C validator |