![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzelz | GIF version |
Description: A member of a finite set of sequential integer is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzelz | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 10035 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
2 | eluzelz 9551 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2158 ‘cfv 5228 (class class class)co 5888 ℤcz 9267 ℤ≥cuz 9542 ...cfz 10022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-neg 8145 df-z 9268 df-uz 9543 df-fz 10023 |
This theorem is referenced by: elfzelzd 10040 elfz1eq 10049 fzsplit2 10064 fzdisj 10066 elfznn 10068 fznatpl1 10090 fzdifsuc 10095 fzrev2i 10100 fzrev3i 10102 elfzp12 10113 fznuz 10116 fzrevral 10119 fzshftral 10122 fznn0sub2 10142 elfzmlbm 10145 difelfznle 10149 fzosplit 10191 ser3mono 10492 iseqf1olemkle 10498 iseqf1olemklt 10499 iseqf1olemqcl 10500 iseqf1olemnab 10502 iseqf1olemab 10503 iseqf1olemmo 10506 iseqf1olemqk 10508 seq3f1olemqsumkj 10512 seq3f1olemqsumk 10513 seq3f1olemqsum 10514 seq3f1olemstep 10515 bcval2 10744 bcval4 10746 bccmpl 10748 bcp1nk 10756 bcpasc 10760 bccl2 10762 zfz1isolemiso 10833 seq3coll 10836 seq3shft 10861 sumrbdclem 11399 summodclem2a 11403 fsum0diaglem 11462 fisum0diag 11463 mptfzshft 11464 fsumrev 11465 fsumshft 11466 fsumshftm 11467 fisum0diag2 11469 binomlem 11505 binom11 11508 bcxmas 11511 arisum 11520 geo2sum 11536 cvgratnnlemabsle 11549 cvgratnnlemrate 11552 mertenslemub 11556 mertenslemi1 11557 prodfap0 11567 prodrbdclem 11593 prodmodclem2a 11598 fprodntrivap 11606 fprodm1 11620 fprod1p 11621 fprodfac 11637 fprodeq0 11639 fprodshft 11640 fprodrev 11641 fprod0diagfz 11650 fzm1ndvds 11876 zsupssdc 11969 lcmval 12077 lcmcllem 12081 lcmledvds 12084 prmdc 12144 prmdvdsfz 12153 isprm5lem 12155 phivalfi 12226 hashdvds 12235 phiprmpw 12236 eulerthlemrprm 12243 eulerthlema 12244 prmdiveq 12250 prmdivdiv 12251 modprminv 12263 modprminveq 12264 modprm0 12268 pcfac 12362 lgsval2lem 14707 lgsdilem2 14733 lgseisenlem1 14746 lgseisenlem2 14747 trilpolemlt1 15086 supfz 15116 inffz 15117 |
Copyright terms: Public domain | W3C validator |