ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zrhvalg GIF version

Theorem zrhvalg 14250
Description: Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypothesis
Ref Expression
zrhval.l 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
zrhvalg (𝑅𝑉𝐿 = (ℤring RingHom 𝑅))

Proof of Theorem zrhvalg
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 zrhval.l . 2 𝐿 = (ℤRHom‘𝑅)
2 df-zrh 14246 . . 3 ℤRHom = (𝑟 ∈ V ↦ (ℤring RingHom 𝑟))
3 oveq2 5933 . . . 4 (𝑟 = 𝑅 → (ℤring RingHom 𝑟) = (ℤring RingHom 𝑅))
43unieqd 3851 . . 3 (𝑟 = 𝑅 (ℤring RingHom 𝑟) = (ℤring RingHom 𝑅))
5 elex 2774 . . 3 (𝑅𝑉𝑅 ∈ V)
6 zringring 14225 . . . . 5 ring ∈ Ring
7 rhmex 13789 . . . . 5 ((ℤring ∈ Ring ∧ 𝑅𝑉) → (ℤring RingHom 𝑅) ∈ V)
86, 7mpan 424 . . . 4 (𝑅𝑉 → (ℤring RingHom 𝑅) ∈ V)
98uniexd 4476 . . 3 (𝑅𝑉 (ℤring RingHom 𝑅) ∈ V)
102, 4, 5, 9fvmptd3 5658 . 2 (𝑅𝑉 → (ℤRHom‘𝑅) = (ℤring RingHom 𝑅))
111, 10eqtrid 2241 1 (𝑅𝑉𝐿 = (ℤring RingHom 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763   cuni 3840  cfv 5259  (class class class)co 5925  Ringcrg 13628   RingHom crh 13782  ringczring 14222  ℤRHomczrh 14243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-addf 8018  ax-mulf 8019
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-rp 9746  df-fz 10101  df-cj 11024  df-abs 11181  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-starv 12795  df-tset 12799  df-ple 12800  df-ds 12802  df-unif 12803  df-0g 12960  df-topgen 12962  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-subg 13376  df-cmn 13492  df-mgp 13553  df-ur 13592  df-ring 13630  df-cring 13631  df-rhm 13784  df-subrg 13851  df-bl 14178  df-mopn 14179  df-fg 14181  df-metu 14182  df-cnfld 14189  df-zring 14223  df-zrh 14246
This theorem is referenced by:  zrhval2  14251  zrhex  14253
  Copyright terms: Public domain W3C validator