| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zrhval | GIF version | ||
| Description: Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| Ref | Expression |
|---|---|
| zrhval.l | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| Ref | Expression |
|---|---|
| zrhval | ⊢ 𝐿 = ∪ (ℤring RingHom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhval.l | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 2 | df-zrh 14586 | . . . . . . . . 9 ⊢ ℤRHom = (𝑟 ∈ V ↦ ∪ (ℤring RingHom 𝑟)) | |
| 3 | 2 | mptrcl 5719 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤRHom‘𝑅) → 𝑅 ∈ V) |
| 4 | 3, 1 | eleq2s 2324 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐿 → 𝑅 ∈ V) |
| 5 | zringring 14565 | . . . . . . . . . 10 ⊢ ℤring ∈ Ring | |
| 6 | rhmex 14129 | . . . . . . . . . 10 ⊢ ((ℤring ∈ Ring ∧ 𝑅 ∈ V) → (ℤring RingHom 𝑅) ∈ V) | |
| 7 | 5, 6 | mpan 424 | . . . . . . . . 9 ⊢ (𝑅 ∈ V → (ℤring RingHom 𝑅) ∈ V) |
| 8 | 7 | uniexd 4531 | . . . . . . . 8 ⊢ (𝑅 ∈ V → ∪ (ℤring RingHom 𝑅) ∈ V) |
| 9 | oveq2 6015 | . . . . . . . . . 10 ⊢ (𝑟 = 𝑅 → (ℤring RingHom 𝑟) = (ℤring RingHom 𝑅)) | |
| 10 | 9 | unieqd 3899 | . . . . . . . . 9 ⊢ (𝑟 = 𝑅 → ∪ (ℤring RingHom 𝑟) = ∪ (ℤring RingHom 𝑅)) |
| 11 | 10, 2 | fvmptg 5712 | . . . . . . . 8 ⊢ ((𝑅 ∈ V ∧ ∪ (ℤring RingHom 𝑅) ∈ V) → (ℤRHom‘𝑅) = ∪ (ℤring RingHom 𝑅)) |
| 12 | 8, 11 | mpdan 421 | . . . . . . 7 ⊢ (𝑅 ∈ V → (ℤRHom‘𝑅) = ∪ (ℤring RingHom 𝑅)) |
| 13 | 4, 12 | syl 14 | . . . . . 6 ⊢ (𝑥 ∈ 𝐿 → (ℤRHom‘𝑅) = ∪ (ℤring RingHom 𝑅)) |
| 14 | 1, 13 | eqtrid 2274 | . . . . 5 ⊢ (𝑥 ∈ 𝐿 → 𝐿 = ∪ (ℤring RingHom 𝑅)) |
| 15 | 14 | eleq2d 2299 | . . . 4 ⊢ (𝑥 ∈ 𝐿 → (𝑥 ∈ 𝐿 ↔ 𝑥 ∈ ∪ (ℤring RingHom 𝑅))) |
| 16 | 15 | ibi 176 | . . 3 ⊢ (𝑥 ∈ 𝐿 → 𝑥 ∈ ∪ (ℤring RingHom 𝑅)) |
| 17 | eluni2 3892 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ∪ (ℤring RingHom 𝑅) ↔ ∃𝑦 ∈ (ℤring RingHom 𝑅)𝑥 ∈ 𝑦) | |
| 18 | rexm 3591 | . . . . . . . . . 10 ⊢ (∃𝑦 ∈ (ℤring RingHom 𝑅)𝑥 ∈ 𝑦 → ∃𝑦 𝑦 ∈ (ℤring RingHom 𝑅)) | |
| 19 | 17, 18 | sylbi 121 | . . . . . . . . 9 ⊢ (𝑥 ∈ ∪ (ℤring RingHom 𝑅) → ∃𝑦 𝑦 ∈ (ℤring RingHom 𝑅)) |
| 20 | rhmrcl2 14128 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (ℤring RingHom 𝑅) → 𝑅 ∈ Ring) | |
| 21 | 20 | exlimiv 1644 | . . . . . . . . 9 ⊢ (∃𝑦 𝑦 ∈ (ℤring RingHom 𝑅) → 𝑅 ∈ Ring) |
| 22 | 19, 21 | syl 14 | . . . . . . . 8 ⊢ (𝑥 ∈ ∪ (ℤring RingHom 𝑅) → 𝑅 ∈ Ring) |
| 23 | 22 | elexd 2813 | . . . . . . 7 ⊢ (𝑥 ∈ ∪ (ℤring RingHom 𝑅) → 𝑅 ∈ V) |
| 24 | 23, 12 | syl 14 | . . . . . 6 ⊢ (𝑥 ∈ ∪ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅) = ∪ (ℤring RingHom 𝑅)) |
| 25 | 1, 24 | eqtrid 2274 | . . . . 5 ⊢ (𝑥 ∈ ∪ (ℤring RingHom 𝑅) → 𝐿 = ∪ (ℤring RingHom 𝑅)) |
| 26 | 25 | eleq2d 2299 | . . . 4 ⊢ (𝑥 ∈ ∪ (ℤring RingHom 𝑅) → (𝑥 ∈ 𝐿 ↔ 𝑥 ∈ ∪ (ℤring RingHom 𝑅))) |
| 27 | 26 | ibir 177 | . . 3 ⊢ (𝑥 ∈ ∪ (ℤring RingHom 𝑅) → 𝑥 ∈ 𝐿) |
| 28 | 16, 27 | impbii 126 | . 2 ⊢ (𝑥 ∈ 𝐿 ↔ 𝑥 ∈ ∪ (ℤring RingHom 𝑅)) |
| 29 | 28 | eqriv 2226 | 1 ⊢ 𝐿 = ∪ (ℤring RingHom 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∃wrex 2509 Vcvv 2799 ∪ cuni 3888 ‘cfv 5318 (class class class)co 6007 Ringcrg 13967 RingHom crh 14122 ℤringczring 14562 ℤRHomczrh 14583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-addf 8129 ax-mulf 8130 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-map 6805 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-rp 9858 df-fz 10213 df-cj 11361 df-abs 11518 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-mulr 13132 df-starv 13133 df-tset 13137 df-ple 13138 df-ds 13140 df-unif 13141 df-0g 13299 df-topgen 13301 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-mhm 13500 df-grp 13544 df-minusg 13545 df-subg 13715 df-ghm 13786 df-cmn 13831 df-mgp 13892 df-ur 13931 df-ring 13969 df-cring 13970 df-rhm 14124 df-subrg 14191 df-bl 14518 df-mopn 14519 df-fg 14521 df-metu 14522 df-cnfld 14529 df-zring 14563 df-zrh 14586 |
| This theorem is referenced by: zrhpropd 14598 |
| Copyright terms: Public domain | W3C validator |