![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zrhval | GIF version |
Description: Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
Ref | Expression |
---|---|
zrhval.l | ⊢ 𝐿 = (ℤRHom‘𝑅) |
Ref | Expression |
---|---|
zrhval | ⊢ 𝐿 = ∪ (ℤring RingHom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrhval.l | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
2 | df-zrh 14102 | . . . . . . . . 9 ⊢ ℤRHom = (𝑟 ∈ V ↦ ∪ (ℤring RingHom 𝑟)) | |
3 | 2 | mptrcl 5640 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤRHom‘𝑅) → 𝑅 ∈ V) |
4 | 3, 1 | eleq2s 2288 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐿 → 𝑅 ∈ V) |
5 | zringring 14081 | . . . . . . . . . 10 ⊢ ℤring ∈ Ring | |
6 | rhmex 13653 | . . . . . . . . . 10 ⊢ ((ℤring ∈ Ring ∧ 𝑅 ∈ V) → (ℤring RingHom 𝑅) ∈ V) | |
7 | 5, 6 | mpan 424 | . . . . . . . . 9 ⊢ (𝑅 ∈ V → (ℤring RingHom 𝑅) ∈ V) |
8 | 7 | uniexd 4471 | . . . . . . . 8 ⊢ (𝑅 ∈ V → ∪ (ℤring RingHom 𝑅) ∈ V) |
9 | oveq2 5926 | . . . . . . . . . 10 ⊢ (𝑟 = 𝑅 → (ℤring RingHom 𝑟) = (ℤring RingHom 𝑅)) | |
10 | 9 | unieqd 3846 | . . . . . . . . 9 ⊢ (𝑟 = 𝑅 → ∪ (ℤring RingHom 𝑟) = ∪ (ℤring RingHom 𝑅)) |
11 | 10, 2 | fvmptg 5633 | . . . . . . . 8 ⊢ ((𝑅 ∈ V ∧ ∪ (ℤring RingHom 𝑅) ∈ V) → (ℤRHom‘𝑅) = ∪ (ℤring RingHom 𝑅)) |
12 | 8, 11 | mpdan 421 | . . . . . . 7 ⊢ (𝑅 ∈ V → (ℤRHom‘𝑅) = ∪ (ℤring RingHom 𝑅)) |
13 | 4, 12 | syl 14 | . . . . . 6 ⊢ (𝑥 ∈ 𝐿 → (ℤRHom‘𝑅) = ∪ (ℤring RingHom 𝑅)) |
14 | 1, 13 | eqtrid 2238 | . . . . 5 ⊢ (𝑥 ∈ 𝐿 → 𝐿 = ∪ (ℤring RingHom 𝑅)) |
15 | 14 | eleq2d 2263 | . . . 4 ⊢ (𝑥 ∈ 𝐿 → (𝑥 ∈ 𝐿 ↔ 𝑥 ∈ ∪ (ℤring RingHom 𝑅))) |
16 | 15 | ibi 176 | . . 3 ⊢ (𝑥 ∈ 𝐿 → 𝑥 ∈ ∪ (ℤring RingHom 𝑅)) |
17 | eluni2 3839 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ∪ (ℤring RingHom 𝑅) ↔ ∃𝑦 ∈ (ℤring RingHom 𝑅)𝑥 ∈ 𝑦) | |
18 | rexm 3546 | . . . . . . . . . 10 ⊢ (∃𝑦 ∈ (ℤring RingHom 𝑅)𝑥 ∈ 𝑦 → ∃𝑦 𝑦 ∈ (ℤring RingHom 𝑅)) | |
19 | 17, 18 | sylbi 121 | . . . . . . . . 9 ⊢ (𝑥 ∈ ∪ (ℤring RingHom 𝑅) → ∃𝑦 𝑦 ∈ (ℤring RingHom 𝑅)) |
20 | rhmrcl2 13652 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (ℤring RingHom 𝑅) → 𝑅 ∈ Ring) | |
21 | 20 | exlimiv 1609 | . . . . . . . . 9 ⊢ (∃𝑦 𝑦 ∈ (ℤring RingHom 𝑅) → 𝑅 ∈ Ring) |
22 | 19, 21 | syl 14 | . . . . . . . 8 ⊢ (𝑥 ∈ ∪ (ℤring RingHom 𝑅) → 𝑅 ∈ Ring) |
23 | 22 | elexd 2773 | . . . . . . 7 ⊢ (𝑥 ∈ ∪ (ℤring RingHom 𝑅) → 𝑅 ∈ V) |
24 | 23, 12 | syl 14 | . . . . . 6 ⊢ (𝑥 ∈ ∪ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅) = ∪ (ℤring RingHom 𝑅)) |
25 | 1, 24 | eqtrid 2238 | . . . . 5 ⊢ (𝑥 ∈ ∪ (ℤring RingHom 𝑅) → 𝐿 = ∪ (ℤring RingHom 𝑅)) |
26 | 25 | eleq2d 2263 | . . . 4 ⊢ (𝑥 ∈ ∪ (ℤring RingHom 𝑅) → (𝑥 ∈ 𝐿 ↔ 𝑥 ∈ ∪ (ℤring RingHom 𝑅))) |
27 | 26 | ibir 177 | . . 3 ⊢ (𝑥 ∈ ∪ (ℤring RingHom 𝑅) → 𝑥 ∈ 𝐿) |
28 | 16, 27 | impbii 126 | . 2 ⊢ (𝑥 ∈ 𝐿 ↔ 𝑥 ∈ ∪ (ℤring RingHom 𝑅)) |
29 | 28 | eqriv 2190 | 1 ⊢ 𝐿 = ∪ (ℤring RingHom 𝑅) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∃wrex 2473 Vcvv 2760 ∪ cuni 3835 ‘cfv 5254 (class class class)co 5918 Ringcrg 13492 RingHom crh 13646 ℤringczring 14078 ℤRHomczrh 14099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-addf 7994 ax-mulf 7995 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-tp 3626 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-map 6704 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-z 9318 df-dec 9449 df-uz 9593 df-fz 10075 df-cj 10986 df-struct 12620 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-plusg 12708 df-mulr 12709 df-starv 12710 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-mhm 13031 df-grp 13075 df-minusg 13076 df-subg 13240 df-ghm 13311 df-cmn 13356 df-mgp 13417 df-ur 13456 df-ring 13494 df-cring 13495 df-rhm 13648 df-subrg 13715 df-icnfld 14048 df-zring 14079 df-zrh 14102 |
This theorem is referenced by: zrhpropd 14114 |
Copyright terms: Public domain | W3C validator |