| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzfz2 | GIF version | ||
| Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| eluzfz2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9692 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 2 | uzid 9697 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ≥‘𝑁)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (ℤ≥‘𝑁)) |
| 4 | eluzfz 10177 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ (𝑀...𝑁)) | |
| 5 | 3, 4 | mpdan 421 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 ‘cfv 5290 (class class class)co 5967 ℤcz 9407 ℤ≥cuz 9683 ...cfz 10165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltirr 8072 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-neg 8281 df-z 9408 df-uz 9684 df-fz 10166 |
| This theorem is referenced by: eluzfz2b 10190 elfzubelfz 10193 fzopth 10218 fzsuc 10226 fseq1p1m1 10251 fzm1 10257 fzneuz 10258 fzoend 10388 exfzdc 10406 uzsinds 10626 seq3clss 10653 seq3fveq2 10657 seqfveq2g 10659 seq3shft2 10663 seqshft2g 10664 monoord 10667 monoord2 10668 seq3split 10670 seqsplitg 10671 seq3caopr3 10673 seqcaopr3g 10674 seq3f1olemp 10697 seqf1oglem2a 10700 seqf1oglem1 10701 seqf1oglem2 10702 seq3id3 10706 seq3id2 10708 seqhomog 10712 seqfeq4g 10713 ser3ge0 10718 seq3coll 11024 wrdeqs1cat 11211 pfxccatin12lem2 11222 pfxccatin12lem3 11223 summodclem2a 11807 fsumm1 11842 telfsumo 11892 telfsumo2 11893 fsumparts 11896 prodfap0 11971 prodfrecap 11972 prodmodclem2a 12002 fprodm1 12024 eulerthlemrprm 12666 eulerthlema 12667 nninfdclemlt 12937 gsumval2 13344 gsumfzz 13442 gsumfzconst 13792 gsumfzfsumlemm 14464 supfz 16212 |
| Copyright terms: Public domain | W3C validator |