Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluzfz2 | GIF version |
Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
eluzfz2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9471 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
2 | uzid 9476 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ≥‘𝑁)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (ℤ≥‘𝑁)) |
4 | eluzfz 9951 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ (𝑀...𝑁)) | |
5 | 3, 4 | mpdan 418 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ‘cfv 5187 (class class class)co 5841 ℤcz 9187 ℤ≥cuz 9462 ...cfz 9940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-pre-ltirr 7861 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-fv 5195 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-neg 8068 df-z 9188 df-uz 9463 df-fz 9941 |
This theorem is referenced by: eluzfz2b 9964 elfzubelfz 9967 fzopth 9992 fzsuc 10000 fseq1p1m1 10025 fzm1 10031 fzneuz 10032 fzoend 10153 exfzdc 10171 uzsinds 10373 seq3clss 10398 seq3fveq2 10400 seq3shft2 10404 monoord 10407 monoord2 10408 seq3split 10410 seq3caopr3 10412 seq3f1olemp 10433 seq3id3 10438 seq3id2 10440 ser3ge0 10448 seq3coll 10751 summodclem2a 11318 fsumm1 11353 telfsumo 11403 telfsumo2 11404 fsumparts 11407 prodfap0 11482 prodfrecap 11483 prodmodclem2a 11513 fprodm1 11535 eulerthlemrprm 12157 eulerthlema 12158 nninfdclemlt 12380 supfz 13907 |
Copyright terms: Public domain | W3C validator |