![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluzfz2 | GIF version |
Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
eluzfz2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9601 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
2 | uzid 9606 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ≥‘𝑁)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (ℤ≥‘𝑁)) |
4 | eluzfz 10086 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ (𝑀...𝑁)) | |
5 | 3, 4 | mpdan 421 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 ℤcz 9317 ℤ≥cuz 9592 ...cfz 10074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-pre-ltirr 7984 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-neg 8193 df-z 9318 df-uz 9593 df-fz 10075 |
This theorem is referenced by: eluzfz2b 10099 elfzubelfz 10102 fzopth 10127 fzsuc 10135 fseq1p1m1 10160 fzm1 10166 fzneuz 10167 fzoend 10289 exfzdc 10307 uzsinds 10515 seq3clss 10542 seq3fveq2 10546 seqfveq2g 10548 seq3shft2 10552 seqshft2g 10553 monoord 10556 monoord2 10557 seq3split 10559 seqsplitg 10560 seq3caopr3 10562 seqcaopr3g 10563 seq3f1olemp 10586 seqf1oglem2a 10589 seqf1oglem1 10590 seqf1oglem2 10591 seq3id3 10595 seq3id2 10597 seqhomog 10601 seqfeq4g 10602 ser3ge0 10607 seq3coll 10913 summodclem2a 11524 fsumm1 11559 telfsumo 11609 telfsumo2 11610 fsumparts 11613 prodfap0 11688 prodfrecap 11689 prodmodclem2a 11719 fprodm1 11741 eulerthlemrprm 12367 eulerthlema 12368 nninfdclemlt 12608 gsumval2 12980 gsumfzz 13067 gsumfzconst 13411 gsumfzfsumlemm 14075 supfz 15561 |
Copyright terms: Public domain | W3C validator |