ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzfz2 GIF version

Theorem eluzfz2 10032
Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
eluzfz2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))

Proof of Theorem eluzfz2
StepHypRef Expression
1 eluzelz 9537 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2 uzid 9542 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
31, 2syl 14 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (ℤ𝑁))
4 eluzfz 10020 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑁)) → 𝑁 ∈ (𝑀...𝑁))
53, 4mpdan 421 1 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  cfv 5217  (class class class)co 5875  cz 9253  cuz 9528  ...cfz 10008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-pre-ltirr 7923
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-neg 8131  df-z 9254  df-uz 9529  df-fz 10009
This theorem is referenced by:  eluzfz2b  10033  elfzubelfz  10036  fzopth  10061  fzsuc  10069  fseq1p1m1  10094  fzm1  10100  fzneuz  10101  fzoend  10222  exfzdc  10240  uzsinds  10442  seq3clss  10467  seq3fveq2  10469  seq3shft2  10473  monoord  10476  monoord2  10477  seq3split  10479  seq3caopr3  10481  seq3f1olemp  10502  seq3id3  10507  seq3id2  10509  ser3ge0  10517  seq3coll  10822  summodclem2a  11389  fsumm1  11424  telfsumo  11474  telfsumo2  11475  fsumparts  11478  prodfap0  11553  prodfrecap  11554  prodmodclem2a  11584  fprodm1  11606  eulerthlemrprm  12229  eulerthlema  12230  nninfdclemlt  12452  supfz  14821
  Copyright terms: Public domain W3C validator