ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzfz2 GIF version

Theorem eluzfz2 9507
Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
eluzfz2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))

Proof of Theorem eluzfz2
StepHypRef Expression
1 eluzelz 9089 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2 uzid 9094 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
31, 2syl 14 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (ℤ𝑁))
4 eluzfz 9496 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑁)) → 𝑁 ∈ (𝑀...𝑁))
53, 4mpdan 413 1 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1439  cfv 5028  (class class class)co 5666  cz 8811  cuz 9080  ...cfz 9485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7497  ax-resscn 7498  ax-pre-ltirr 7518
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-fv 5036  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-neg 7717  df-z 8812  df-uz 9081  df-fz 9486
This theorem is referenced by:  eluzfz2b  9508  elfzubelfz  9511  fzopth  9536  fzsuc  9544  fseq1p1m1  9569  fzm1  9575  fzneuz  9576  fzoend  9694  exfzdc  9712  uzsinds  9909  seq3clss  9948  iseqfveq2  9951  seq3fveq2  9953  iseqshft2  9959  monoord  9965  monoord2  9966  seq3split  9968  iseqsplit  9969  iseqcaopr3  9971  seq3f1olemp  9992  iseqid3s  9999  seq3id2  10001  iseqid2  10002  ser3ge0  10013  iseqcoll  10308  isummolem2a  10832  fsumm1  10871  telfsumo  10921  telfsumo2  10922  fsumparts  10925  supfz  12188
  Copyright terms: Public domain W3C validator