| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzfz2 | GIF version | ||
| Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| eluzfz2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9610 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 2 | uzid 9615 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ≥‘𝑁)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (ℤ≥‘𝑁)) |
| 4 | eluzfz 10095 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ (𝑀...𝑁)) | |
| 5 | 3, 4 | mpdan 421 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 ℤcz 9326 ℤ≥cuz 9601 ...cfz 10083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-neg 8200 df-z 9327 df-uz 9602 df-fz 10084 |
| This theorem is referenced by: eluzfz2b 10108 elfzubelfz 10111 fzopth 10136 fzsuc 10144 fseq1p1m1 10169 fzm1 10175 fzneuz 10176 fzoend 10298 exfzdc 10316 uzsinds 10536 seq3clss 10563 seq3fveq2 10567 seqfveq2g 10569 seq3shft2 10573 seqshft2g 10574 monoord 10577 monoord2 10578 seq3split 10580 seqsplitg 10581 seq3caopr3 10583 seqcaopr3g 10584 seq3f1olemp 10607 seqf1oglem2a 10610 seqf1oglem1 10611 seqf1oglem2 10612 seq3id3 10616 seq3id2 10618 seqhomog 10622 seqfeq4g 10623 ser3ge0 10628 seq3coll 10934 summodclem2a 11546 fsumm1 11581 telfsumo 11631 telfsumo2 11632 fsumparts 11635 prodfap0 11710 prodfrecap 11711 prodmodclem2a 11741 fprodm1 11763 eulerthlemrprm 12397 eulerthlema 12398 nninfdclemlt 12668 gsumval2 13040 gsumfzz 13127 gsumfzconst 13471 gsumfzfsumlemm 14143 supfz 15715 |
| Copyright terms: Public domain | W3C validator |