![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > apcxp2 | GIF version |
Description: Apartness and real exponentiation. (Contributed by Jim Kingdon, 10-Jul-2024.) |
Ref | Expression |
---|---|
apcxp2 | ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 # 𝐶 ↔ (𝐴↑𝑐𝐵) # (𝐴↑𝑐𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 529 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐵 ∈ ℝ) | |
2 | simpll 527 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐴 ∈ ℝ+) | |
3 | 2 | relogcld 14700 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (log‘𝐴) ∈ ℝ) |
4 | 1, 3 | remulcld 8006 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 · (log‘𝐴)) ∈ ℝ) |
5 | simprr 531 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐶 ∈ ℝ) | |
6 | 5, 3 | remulcld 8006 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐶 · (log‘𝐴)) ∈ ℝ) |
7 | reapef 14596 | . . 3 ⊢ (((𝐵 · (log‘𝐴)) ∈ ℝ ∧ (𝐶 · (log‘𝐴)) ∈ ℝ) → ((𝐵 · (log‘𝐴)) # (𝐶 · (log‘𝐴)) ↔ (exp‘(𝐵 · (log‘𝐴))) # (exp‘(𝐶 · (log‘𝐴))))) | |
8 | 4, 6, 7 | syl2anc 411 | . 2 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐵 · (log‘𝐴)) # (𝐶 · (log‘𝐴)) ↔ (exp‘(𝐵 · (log‘𝐴))) # (exp‘(𝐶 · (log‘𝐴))))) |
9 | 1 | recnd 8004 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐵 ∈ ℂ) |
10 | 5 | recnd 8004 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐶 ∈ ℂ) |
11 | 3 | recnd 8004 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (log‘𝐴) ∈ ℂ) |
12 | simplr 528 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐴 # 1) | |
13 | 2, 12 | logrpap0d 14696 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (log‘𝐴) # 0) |
14 | apmul1 8763 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ((log‘𝐴) ∈ ℂ ∧ (log‘𝐴) # 0)) → (𝐵 # 𝐶 ↔ (𝐵 · (log‘𝐴)) # (𝐶 · (log‘𝐴)))) | |
15 | 9, 10, 11, 13, 14 | syl112anc 1253 | . 2 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 # 𝐶 ↔ (𝐵 · (log‘𝐴)) # (𝐶 · (log‘𝐴)))) |
16 | rpcxpef 14712 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | |
17 | 2, 9, 16 | syl2anc 411 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
18 | rpcxpef 14712 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴)))) | |
19 | 2, 10, 18 | syl2anc 411 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐴↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴)))) |
20 | 17, 19 | breq12d 4031 | . 2 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐴↑𝑐𝐵) # (𝐴↑𝑐𝐶) ↔ (exp‘(𝐵 · (log‘𝐴))) # (exp‘(𝐶 · (log‘𝐴))))) |
21 | 8, 15, 20 | 3bitr4d 220 | 1 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 # 𝐶 ↔ (𝐴↑𝑐𝐵) # (𝐴↑𝑐𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 ‘cfv 5231 (class class class)co 5891 ℂcc 7827 ℝcr 7828 0cc0 7829 1c1 7830 · cmul 7834 # cap 8556 ℝ+crp 9671 expce 11668 logclog 14674 ↑𝑐ccxp 14675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-mulrcl 7928 ax-addcom 7929 ax-mulcom 7930 ax-addass 7931 ax-mulass 7932 ax-distr 7933 ax-i2m1 7934 ax-0lt1 7935 ax-1rid 7936 ax-0id 7937 ax-rnegex 7938 ax-precex 7939 ax-cnre 7940 ax-pre-ltirr 7941 ax-pre-ltwlin 7942 ax-pre-lttrn 7943 ax-pre-apti 7944 ax-pre-ltadd 7945 ax-pre-mulgt0 7946 ax-pre-mulext 7947 ax-arch 7948 ax-caucvg 7949 ax-pre-suploc 7950 ax-addf 7951 ax-mulf 7952 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-disj 3996 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-po 4311 df-iso 4312 df-iord 4381 df-on 4383 df-ilim 4384 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-isom 5240 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-of 6101 df-1st 6159 df-2nd 6160 df-recs 6324 df-irdg 6389 df-frec 6410 df-1o 6435 df-oadd 6439 df-er 6553 df-map 6668 df-pm 6669 df-en 6759 df-dom 6760 df-fin 6761 df-sup 7001 df-inf 7002 df-pnf 8012 df-mnf 8013 df-xr 8014 df-ltxr 8015 df-le 8016 df-sub 8148 df-neg 8149 df-reap 8550 df-ap 8557 df-div 8648 df-inn 8938 df-2 8996 df-3 8997 df-4 8998 df-n0 9195 df-z 9272 df-uz 9547 df-q 9638 df-rp 9672 df-xneg 9790 df-xadd 9791 df-ioo 9910 df-ico 9912 df-icc 9913 df-fz 10027 df-fzo 10161 df-seqfrec 10464 df-exp 10538 df-fac 10724 df-bc 10746 df-ihash 10774 df-shft 10842 df-cj 10869 df-re 10870 df-im 10871 df-rsqrt 11025 df-abs 11026 df-clim 11305 df-sumdc 11380 df-ef 11674 df-e 11675 df-rest 12712 df-topgen 12731 df-psmet 13817 df-xmet 13818 df-met 13819 df-bl 13820 df-mopn 13821 df-top 13895 df-topon 13908 df-bases 13940 df-ntr 13993 df-cn 14085 df-cnp 14086 df-tx 14150 df-cncf 14455 df-limced 14522 df-dvap 14523 df-relog 14676 df-rpcxp 14677 |
This theorem is referenced by: logbgcd1irraplemap 14784 |
Copyright terms: Public domain | W3C validator |