ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apcxp2 GIF version

Theorem apcxp2 15175
Description: Apartness and real exponentiation. (Contributed by Jim Kingdon, 10-Jul-2024.)
Assertion
Ref Expression
apcxp2 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 # 𝐶 ↔ (𝐴𝑐𝐵) # (𝐴𝑐𝐶)))

Proof of Theorem apcxp2
StepHypRef Expression
1 simprl 529 . . . 4 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐵 ∈ ℝ)
2 simpll 527 . . . . 5 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐴 ∈ ℝ+)
32relogcld 15118 . . . 4 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (log‘𝐴) ∈ ℝ)
41, 3remulcld 8057 . . 3 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 · (log‘𝐴)) ∈ ℝ)
5 simprr 531 . . . 4 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐶 ∈ ℝ)
65, 3remulcld 8057 . . 3 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐶 · (log‘𝐴)) ∈ ℝ)
7 reapef 15014 . . 3 (((𝐵 · (log‘𝐴)) ∈ ℝ ∧ (𝐶 · (log‘𝐴)) ∈ ℝ) → ((𝐵 · (log‘𝐴)) # (𝐶 · (log‘𝐴)) ↔ (exp‘(𝐵 · (log‘𝐴))) # (exp‘(𝐶 · (log‘𝐴)))))
84, 6, 7syl2anc 411 . 2 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐵 · (log‘𝐴)) # (𝐶 · (log‘𝐴)) ↔ (exp‘(𝐵 · (log‘𝐴))) # (exp‘(𝐶 · (log‘𝐴)))))
91recnd 8055 . . 3 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐵 ∈ ℂ)
105recnd 8055 . . 3 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐶 ∈ ℂ)
113recnd 8055 . . 3 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (log‘𝐴) ∈ ℂ)
12 simplr 528 . . . 4 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐴 # 1)
132, 12logrpap0d 15114 . . 3 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (log‘𝐴) # 0)
14 apmul1 8815 . . 3 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ((log‘𝐴) ∈ ℂ ∧ (log‘𝐴) # 0)) → (𝐵 # 𝐶 ↔ (𝐵 · (log‘𝐴)) # (𝐶 · (log‘𝐴))))
159, 10, 11, 13, 14syl112anc 1253 . 2 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 # 𝐶 ↔ (𝐵 · (log‘𝐴)) # (𝐶 · (log‘𝐴))))
16 rpcxpef 15130 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
172, 9, 16syl2anc 411 . . 3 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
18 rpcxpef 15130 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℂ) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
192, 10, 18syl2anc 411 . . 3 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
2017, 19breq12d 4046 . 2 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐴𝑐𝐵) # (𝐴𝑐𝐶) ↔ (exp‘(𝐵 · (log‘𝐴))) # (exp‘(𝐶 · (log‘𝐴)))))
218, 15, 203bitr4d 220 1 (((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 # 𝐶 ↔ (𝐴𝑐𝐵) # (𝐴𝑐𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  1c1 7880   · cmul 7884   # cap 8608  +crp 9728  expce 11807  logclog 15092  𝑐ccxp 15093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-pre-suploc 8000  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-map 6709  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-ioo 9967  df-ico 9969  df-icc 9970  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-bc 10840  df-ihash 10868  df-shft 10980  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813  df-e 11814  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-tx 14489  df-cncf 14807  df-limced 14892  df-dvap 14893  df-relog 15094  df-rpcxp 15095
This theorem is referenced by:  logbgcd1irraplemap  15205
  Copyright terms: Public domain W3C validator