Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > apcxp2 | GIF version |
Description: Apartness and real exponentiation. (Contributed by Jim Kingdon, 10-Jul-2024.) |
Ref | Expression |
---|---|
apcxp2 | ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 # 𝐶 ↔ (𝐴↑𝑐𝐵) # (𝐴↑𝑐𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 521 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐵 ∈ ℝ) | |
2 | simpll 519 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐴 ∈ ℝ+) | |
3 | 2 | relogcld 13403 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (log‘𝐴) ∈ ℝ) |
4 | 1, 3 | remulcld 7925 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 · (log‘𝐴)) ∈ ℝ) |
5 | simprr 522 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐶 ∈ ℝ) | |
6 | 5, 3 | remulcld 7925 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐶 · (log‘𝐴)) ∈ ℝ) |
7 | reapef 13299 | . . 3 ⊢ (((𝐵 · (log‘𝐴)) ∈ ℝ ∧ (𝐶 · (log‘𝐴)) ∈ ℝ) → ((𝐵 · (log‘𝐴)) # (𝐶 · (log‘𝐴)) ↔ (exp‘(𝐵 · (log‘𝐴))) # (exp‘(𝐶 · (log‘𝐴))))) | |
8 | 4, 6, 7 | syl2anc 409 | . 2 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐵 · (log‘𝐴)) # (𝐶 · (log‘𝐴)) ↔ (exp‘(𝐵 · (log‘𝐴))) # (exp‘(𝐶 · (log‘𝐴))))) |
9 | 1 | recnd 7923 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐵 ∈ ℂ) |
10 | 5 | recnd 7923 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐶 ∈ ℂ) |
11 | 3 | recnd 7923 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (log‘𝐴) ∈ ℂ) |
12 | simplr 520 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐴 # 1) | |
13 | 2, 12 | logrpap0d 13399 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (log‘𝐴) # 0) |
14 | apmul1 8680 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ((log‘𝐴) ∈ ℂ ∧ (log‘𝐴) # 0)) → (𝐵 # 𝐶 ↔ (𝐵 · (log‘𝐴)) # (𝐶 · (log‘𝐴)))) | |
15 | 9, 10, 11, 13, 14 | syl112anc 1232 | . 2 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 # 𝐶 ↔ (𝐵 · (log‘𝐴)) # (𝐶 · (log‘𝐴)))) |
16 | rpcxpef 13415 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | |
17 | 2, 9, 16 | syl2anc 409 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
18 | rpcxpef 13415 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴)))) | |
19 | 2, 10, 18 | syl2anc 409 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐴↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴)))) |
20 | 17, 19 | breq12d 3994 | . 2 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐴↑𝑐𝐵) # (𝐴↑𝑐𝐶) ↔ (exp‘(𝐵 · (log‘𝐴))) # (exp‘(𝐶 · (log‘𝐴))))) |
21 | 8, 15, 20 | 3bitr4d 219 | 1 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 # 𝐶 ↔ (𝐴↑𝑐𝐵) # (𝐴↑𝑐𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 class class class wbr 3981 ‘cfv 5187 (class class class)co 5841 ℂcc 7747 ℝcr 7748 0cc0 7749 1c1 7750 · cmul 7754 # cap 8475 ℝ+crp 9585 expce 11579 logclog 13377 ↑𝑐ccxp 13378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 ax-arch 7868 ax-caucvg 7869 ax-pre-suploc 7870 ax-addf 7871 ax-mulf 7872 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-if 3520 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-disj 3959 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-isom 5196 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-of 6049 df-1st 6105 df-2nd 6106 df-recs 6269 df-irdg 6334 df-frec 6355 df-1o 6380 df-oadd 6384 df-er 6497 df-map 6612 df-pm 6613 df-en 6703 df-dom 6704 df-fin 6705 df-sup 6945 df-inf 6946 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-n0 9111 df-z 9188 df-uz 9463 df-q 9554 df-rp 9586 df-xneg 9704 df-xadd 9705 df-ioo 9824 df-ico 9826 df-icc 9827 df-fz 9941 df-fzo 10074 df-seqfrec 10377 df-exp 10451 df-fac 10635 df-bc 10657 df-ihash 10685 df-shft 10753 df-cj 10780 df-re 10781 df-im 10782 df-rsqrt 10936 df-abs 10937 df-clim 11216 df-sumdc 11291 df-ef 11585 df-e 11586 df-rest 12553 df-topgen 12572 df-psmet 12587 df-xmet 12588 df-met 12589 df-bl 12590 df-mopn 12591 df-top 12596 df-topon 12609 df-bases 12641 df-ntr 12696 df-cn 12788 df-cnp 12789 df-tx 12853 df-cncf 13158 df-limced 13225 df-dvap 13226 df-relog 13379 df-rpcxp 13380 |
This theorem is referenced by: logbgcd1irraplemap 13487 |
Copyright terms: Public domain | W3C validator |