ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expgt1 GIF version

Theorem expgt1 10514
Description: A real greater than 1 raised to a positive integer is greater than 1. (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expgt1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < (𝐴𝑁))

Proof of Theorem expgt1
StepHypRef Expression
1 1re 7919 . . 3 1 ∈ ℝ
21a1i 9 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 ∈ ℝ)
3 simp1 992 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
4 simp2 993 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝑁 ∈ ℕ)
54nnnn0d 9188 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝑁 ∈ ℕ0)
6 reexpcl 10493 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℝ)
73, 5, 6syl2anc 409 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝐴𝑁) ∈ ℝ)
8 simp3 994 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < 𝐴)
9 nnm1nn0 9176 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
104, 9syl 14 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝑁 − 1) ∈ ℕ0)
11 ltle 8007 . . . . . . 7 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐴 → 1 ≤ 𝐴))
121, 3, 11sylancr 412 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 < 𝐴 → 1 ≤ 𝐴))
138, 12mpd 13 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 ≤ 𝐴)
14 expge1 10513 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑁 − 1) ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑(𝑁 − 1)))
153, 10, 13, 14syl3anc 1233 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 ≤ (𝐴↑(𝑁 − 1)))
16 reexpcl 10493 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴↑(𝑁 − 1)) ∈ ℝ)
173, 10, 16syl2anc 409 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝐴↑(𝑁 − 1)) ∈ ℝ)
18 0red 7921 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 0 ∈ ℝ)
19 0lt1 8046 . . . . . . 7 0 < 1
2019a1i 9 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 0 < 1)
2118, 2, 3, 20, 8lttrd 8045 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 0 < 𝐴)
22 lemul1 8512 . . . . 5 ((1 ∈ ℝ ∧ (𝐴↑(𝑁 − 1)) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ (𝐴↑(𝑁 − 1)) ↔ (1 · 𝐴) ≤ ((𝐴↑(𝑁 − 1)) · 𝐴)))
232, 17, 3, 21, 22syl112anc 1237 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 ≤ (𝐴↑(𝑁 − 1)) ↔ (1 · 𝐴) ≤ ((𝐴↑(𝑁 − 1)) · 𝐴)))
2415, 23mpbid 146 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 · 𝐴) ≤ ((𝐴↑(𝑁 − 1)) · 𝐴))
25 recn 7907 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
26253ad2ant1 1013 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 ∈ ℂ)
2726mulid2d 7938 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 · 𝐴) = 𝐴)
2827eqcomd 2176 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 = (1 · 𝐴))
29 expm1t 10504 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴))
3026, 4, 29syl2anc 409 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝐴𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴))
3124, 28, 303brtr4d 4021 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 ≤ (𝐴𝑁))
322, 3, 7, 8, 31ltletrd 8342 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < (𝐴𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 973   = wceq 1348  wcel 2141   class class class wbr 3989  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   · cmul 7779   < clt 7954  cle 7955  cmin 8090  cn 8878  0cn0 9135  cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  ltexp2a  10528  dvdsprmpweqle  12290  logbgcd1irraplemexp  13680
  Copyright terms: Public domain W3C validator