| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2zm | GIF version | ||
| Description: "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
| Ref | Expression |
|---|---|
| peano2zm | ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9331 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | 1cnd 8042 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
| 3 | 1, 2 | negsubdid 8352 | . . 3 ⊢ (𝑁 ∈ ℤ → -(𝑁 − 1) = (-𝑁 + 1)) |
| 4 | znegcl 9357 | . . . 4 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
| 5 | peano2z 9362 | . . . 4 ⊢ (-𝑁 ∈ ℤ → (-𝑁 + 1) ∈ ℤ) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℤ → (-𝑁 + 1) ∈ ℤ) |
| 7 | 3, 6 | eqeltrd 2273 | . 2 ⊢ (𝑁 ∈ ℤ → -(𝑁 − 1) ∈ ℤ) |
| 8 | 1, 2 | subcld 8337 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ) |
| 9 | znegclb 9359 | . . 3 ⊢ ((𝑁 − 1) ∈ ℂ → ((𝑁 − 1) ∈ ℤ ↔ -(𝑁 − 1) ∈ ℤ)) | |
| 10 | 8, 9 | syl 14 | . 2 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) ∈ ℤ ↔ -(𝑁 − 1) ∈ ℤ)) |
| 11 | 7, 10 | mpbird 167 | 1 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 1c1 7880 + caddc 7882 − cmin 8197 -cneg 8198 ℤcz 9326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 |
| This theorem is referenced by: zaddcllemneg 9365 zlem1lt 9382 zltlem1 9383 zextlt 9418 zeo 9431 eluzp1m1 9625 fz01en 10128 fzsuc2 10154 elfzm11 10166 uzdisj 10168 fzof 10219 fzoval 10223 elfzo 10224 fzodcel 10228 fzon 10242 fzoss2 10248 fzossrbm1 10249 fzosplitsnm1 10285 ubmelm1fzo 10302 elfzom1b 10305 fzosplitprm1 10310 fzoshftral 10314 fzofig 10524 uzsinds 10536 ser3mono 10579 iseqf1olemqcl 10591 iseqf1olemnab 10593 iseqf1olemab 10594 seq3f1olemqsumkj 10603 seq3f1olemqsum 10605 seqf1oglem1 10611 seqf1oglem2 10612 bcm1k 10852 bcn2 10856 bcp1m1 10857 bcpasc 10858 bccl 10859 zfz1isolemiso 10931 seq3coll 10934 wrdred1 10977 wrdred1hash 10978 resqrexlemcalc3 11181 resqrexlemnm 11183 fsumm1 11581 binomlem 11648 binom1dif 11652 isumsplit 11656 arisum2 11664 pwm1geoserap1 11673 mertenslemi1 11700 fprodm1 11763 fprodeq0 11782 3dvds 12029 zeo3 12033 oddm1even 12040 oddp1even 12041 zob 12056 nno 12071 bitsfzolem 12118 isprm3 12286 prmdc 12298 isprm5 12310 phibnd 12385 hashdvds 12389 odzcllem 12411 odzdvds 12414 fldivp1 12517 pockthlem 12525 4sqlemffi 12565 4sqleminfi 12566 4sqlem11 12570 4sqlem12 12571 oddennn 12609 znunit 14215 wilthlem1 15216 mersenne 15233 perfectlem1 15235 lgslem1 15241 lgsval2lem 15251 lgseisenlem1 15311 lgseisenlem2 15312 lgseisenlem3 15313 lgsquadlem1 15318 lgsquadlem3 15320 lgsquad2lem1 15322 lgsquad3 15325 2sqlem8 15364 |
| Copyright terms: Public domain | W3C validator |