| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2zm | GIF version | ||
| Description: "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
| Ref | Expression |
|---|---|
| peano2zm | ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9377 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | 1cnd 8088 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
| 3 | 1, 2 | negsubdid 8398 | . . 3 ⊢ (𝑁 ∈ ℤ → -(𝑁 − 1) = (-𝑁 + 1)) |
| 4 | znegcl 9403 | . . . 4 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
| 5 | peano2z 9408 | . . . 4 ⊢ (-𝑁 ∈ ℤ → (-𝑁 + 1) ∈ ℤ) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℤ → (-𝑁 + 1) ∈ ℤ) |
| 7 | 3, 6 | eqeltrd 2282 | . 2 ⊢ (𝑁 ∈ ℤ → -(𝑁 − 1) ∈ ℤ) |
| 8 | 1, 2 | subcld 8383 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ) |
| 9 | znegclb 9405 | . . 3 ⊢ ((𝑁 − 1) ∈ ℂ → ((𝑁 − 1) ∈ ℤ ↔ -(𝑁 − 1) ∈ ℤ)) | |
| 10 | 8, 9 | syl 14 | . 2 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) ∈ ℤ ↔ -(𝑁 − 1) ∈ ℤ)) |
| 11 | 7, 10 | mpbird 167 | 1 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2176 (class class class)co 5944 ℂcc 7923 1c1 7926 + caddc 7928 − cmin 8243 -cneg 8244 ℤcz 9372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 |
| This theorem is referenced by: zaddcllemneg 9411 zlem1lt 9429 zltlem1 9430 zextlt 9465 zeo 9478 eluzp1m1 9672 fz01en 10175 fzsuc2 10201 elfzm11 10213 uzdisj 10215 fzof 10266 fzoval 10270 elfzo 10271 fzodcel 10275 fzon 10289 fzoss2 10296 fzossrbm1 10297 fzosplitsnm1 10338 ubmelm1fzo 10355 elfzom1b 10358 fzosplitprm1 10363 fzoshftral 10367 fzofig 10577 uzsinds 10589 ser3mono 10632 iseqf1olemqcl 10644 iseqf1olemnab 10646 iseqf1olemab 10647 seq3f1olemqsumkj 10656 seq3f1olemqsum 10658 seqf1oglem1 10664 seqf1oglem2 10665 bcm1k 10905 bcn2 10909 bcp1m1 10910 bcpasc 10911 bccl 10912 zfz1isolemiso 10984 seq3coll 10987 wrdred1 11036 wrdred1hash 11037 lswwrd 11040 lsw0 11041 resqrexlemcalc3 11327 resqrexlemnm 11329 fsumm1 11727 binomlem 11794 binom1dif 11798 isumsplit 11802 arisum2 11810 pwm1geoserap1 11819 mertenslemi1 11846 fprodm1 11909 fprodeq0 11928 3dvds 12175 zeo3 12179 oddm1even 12186 oddp1even 12187 zob 12202 nno 12217 bitsfzolem 12265 isprm3 12440 prmdc 12452 isprm5 12464 phibnd 12539 hashdvds 12543 odzcllem 12565 odzdvds 12568 fldivp1 12671 pockthlem 12679 4sqlemffi 12719 4sqleminfi 12720 4sqlem11 12724 4sqlem12 12725 oddennn 12763 znunit 14421 wilthlem1 15452 mersenne 15469 perfectlem1 15471 lgslem1 15477 lgsval2lem 15487 lgseisenlem1 15547 lgseisenlem2 15548 lgseisenlem3 15549 lgsquadlem1 15554 lgsquadlem3 15556 lgsquad2lem1 15558 lgsquad3 15561 2sqlem8 15600 |
| Copyright terms: Public domain | W3C validator |