| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2zm | GIF version | ||
| Description: "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
| Ref | Expression |
|---|---|
| peano2zm | ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9348 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | 1cnd 8059 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
| 3 | 1, 2 | negsubdid 8369 | . . 3 ⊢ (𝑁 ∈ ℤ → -(𝑁 − 1) = (-𝑁 + 1)) |
| 4 | znegcl 9374 | . . . 4 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
| 5 | peano2z 9379 | . . . 4 ⊢ (-𝑁 ∈ ℤ → (-𝑁 + 1) ∈ ℤ) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℤ → (-𝑁 + 1) ∈ ℤ) |
| 7 | 3, 6 | eqeltrd 2273 | . 2 ⊢ (𝑁 ∈ ℤ → -(𝑁 − 1) ∈ ℤ) |
| 8 | 1, 2 | subcld 8354 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ) |
| 9 | znegclb 9376 | . . 3 ⊢ ((𝑁 − 1) ∈ ℂ → ((𝑁 − 1) ∈ ℤ ↔ -(𝑁 − 1) ∈ ℤ)) | |
| 10 | 8, 9 | syl 14 | . 2 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) ∈ ℤ ↔ -(𝑁 − 1) ∈ ℤ)) |
| 11 | 7, 10 | mpbird 167 | 1 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 1c1 7897 + caddc 7899 − cmin 8214 -cneg 8215 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 |
| This theorem is referenced by: zaddcllemneg 9382 zlem1lt 9399 zltlem1 9400 zextlt 9435 zeo 9448 eluzp1m1 9642 fz01en 10145 fzsuc2 10171 elfzm11 10183 uzdisj 10185 fzof 10236 fzoval 10240 elfzo 10241 fzodcel 10245 fzon 10259 fzoss2 10265 fzossrbm1 10266 fzosplitsnm1 10302 ubmelm1fzo 10319 elfzom1b 10322 fzosplitprm1 10327 fzoshftral 10331 fzofig 10541 uzsinds 10553 ser3mono 10596 iseqf1olemqcl 10608 iseqf1olemnab 10610 iseqf1olemab 10611 seq3f1olemqsumkj 10620 seq3f1olemqsum 10622 seqf1oglem1 10628 seqf1oglem2 10629 bcm1k 10869 bcn2 10873 bcp1m1 10874 bcpasc 10875 bccl 10876 zfz1isolemiso 10948 seq3coll 10951 wrdred1 10994 wrdred1hash 10995 resqrexlemcalc3 11198 resqrexlemnm 11200 fsumm1 11598 binomlem 11665 binom1dif 11669 isumsplit 11673 arisum2 11681 pwm1geoserap1 11690 mertenslemi1 11717 fprodm1 11780 fprodeq0 11799 3dvds 12046 zeo3 12050 oddm1even 12057 oddp1even 12058 zob 12073 nno 12088 bitsfzolem 12136 isprm3 12311 prmdc 12323 isprm5 12335 phibnd 12410 hashdvds 12414 odzcllem 12436 odzdvds 12439 fldivp1 12542 pockthlem 12550 4sqlemffi 12590 4sqleminfi 12591 4sqlem11 12595 4sqlem12 12596 oddennn 12634 znunit 14291 wilthlem1 15300 mersenne 15317 perfectlem1 15319 lgslem1 15325 lgsval2lem 15335 lgseisenlem1 15395 lgseisenlem2 15396 lgseisenlem3 15397 lgsquadlem1 15402 lgsquadlem3 15404 lgsquad2lem1 15406 lgsquad3 15409 2sqlem8 15448 |
| Copyright terms: Public domain | W3C validator |