| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2zm | GIF version | ||
| Description: "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
| Ref | Expression |
|---|---|
| peano2zm | ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9412 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | 1cnd 8123 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
| 3 | 1, 2 | negsubdid 8433 | . . 3 ⊢ (𝑁 ∈ ℤ → -(𝑁 − 1) = (-𝑁 + 1)) |
| 4 | znegcl 9438 | . . . 4 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
| 5 | peano2z 9443 | . . . 4 ⊢ (-𝑁 ∈ ℤ → (-𝑁 + 1) ∈ ℤ) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℤ → (-𝑁 + 1) ∈ ℤ) |
| 7 | 3, 6 | eqeltrd 2284 | . 2 ⊢ (𝑁 ∈ ℤ → -(𝑁 − 1) ∈ ℤ) |
| 8 | 1, 2 | subcld 8418 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ) |
| 9 | znegclb 9440 | . . 3 ⊢ ((𝑁 − 1) ∈ ℂ → ((𝑁 − 1) ∈ ℤ ↔ -(𝑁 − 1) ∈ ℤ)) | |
| 10 | 8, 9 | syl 14 | . 2 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) ∈ ℤ ↔ -(𝑁 − 1) ∈ ℤ)) |
| 11 | 7, 10 | mpbird 167 | 1 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2178 (class class class)co 5967 ℂcc 7958 1c1 7961 + caddc 7963 − cmin 8278 -cneg 8279 ℤcz 9407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 |
| This theorem is referenced by: zaddcllemneg 9446 zlem1lt 9464 zltlem1 9465 zextlt 9500 zeo 9513 eluzp1m1 9707 fz01en 10210 fzsuc2 10236 elfzm11 10248 uzdisj 10250 fzof 10301 fzoval 10305 elfzo 10306 fzodcel 10310 fzon 10324 fzoss2 10331 fzossrbm1 10332 fzosplitsnm1 10375 ubmelm1fzo 10392 elfzom1b 10395 fzosplitprm1 10400 fzoshftral 10404 fzofig 10614 uzsinds 10626 ser3mono 10669 iseqf1olemqcl 10681 iseqf1olemnab 10683 iseqf1olemab 10684 seq3f1olemqsumkj 10693 seq3f1olemqsum 10695 seqf1oglem1 10701 seqf1oglem2 10702 bcm1k 10942 bcn2 10946 bcp1m1 10947 bcpasc 10948 bccl 10949 zfz1isolemiso 11021 seq3coll 11024 wrdred1 11073 wrdred1hash 11074 lswwrd 11077 lsw0 11078 resqrexlemcalc3 11442 resqrexlemnm 11444 fsumm1 11842 binomlem 11909 binom1dif 11913 isumsplit 11917 arisum2 11925 pwm1geoserap1 11934 mertenslemi1 11961 fprodm1 12024 fprodeq0 12043 3dvds 12290 zeo3 12294 oddm1even 12301 oddp1even 12302 zob 12317 nno 12332 bitsfzolem 12380 isprm3 12555 prmdc 12567 isprm5 12579 phibnd 12654 hashdvds 12658 odzcllem 12680 odzdvds 12683 fldivp1 12786 pockthlem 12794 4sqlemffi 12834 4sqleminfi 12835 4sqlem11 12839 4sqlem12 12840 oddennn 12878 znunit 14536 wilthlem1 15567 mersenne 15584 perfectlem1 15586 lgslem1 15592 lgsval2lem 15602 lgseisenlem1 15662 lgseisenlem2 15663 lgseisenlem3 15664 lgsquadlem1 15669 lgsquadlem3 15671 lgsquad2lem1 15673 lgsquad3 15676 2sqlem8 15715 |
| Copyright terms: Public domain | W3C validator |