![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2zm | GIF version |
Description: "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
Ref | Expression |
---|---|
peano2zm | ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 8816 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | 1cnd 7565 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
3 | 1, 2 | negsubdid 7869 | . . 3 ⊢ (𝑁 ∈ ℤ → -(𝑁 − 1) = (-𝑁 + 1)) |
4 | znegcl 8842 | . . . 4 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
5 | peano2z 8847 | . . . 4 ⊢ (-𝑁 ∈ ℤ → (-𝑁 + 1) ∈ ℤ) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℤ → (-𝑁 + 1) ∈ ℤ) |
7 | 3, 6 | eqeltrd 2165 | . 2 ⊢ (𝑁 ∈ ℤ → -(𝑁 − 1) ∈ ℤ) |
8 | 1, 2 | subcld 7854 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ) |
9 | znegclb 8844 | . . 3 ⊢ ((𝑁 − 1) ∈ ℂ → ((𝑁 − 1) ∈ ℤ ↔ -(𝑁 − 1) ∈ ℤ)) | |
10 | 8, 9 | syl 14 | . 2 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) ∈ ℤ ↔ -(𝑁 − 1) ∈ ℤ)) |
11 | 7, 10 | mpbird 166 | 1 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 1439 (class class class)co 5666 ℂcc 7409 1c1 7412 + caddc 7414 − cmin 7714 -cneg 7715 ℤcz 8811 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7497 ax-resscn 7498 ax-1cn 7499 ax-1re 7500 ax-icn 7501 ax-addcl 7502 ax-addrcl 7503 ax-mulcl 7504 ax-addcom 7506 ax-addass 7508 ax-distr 7510 ax-i2m1 7511 ax-0lt1 7512 ax-0id 7514 ax-rnegex 7515 ax-cnre 7517 ax-pre-ltirr 7518 ax-pre-ltwlin 7519 ax-pre-lttrn 7520 ax-pre-ltadd 7522 |
This theorem depends on definitions: df-bi 116 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2622 df-sbc 2842 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-br 3852 df-opab 3906 df-id 4129 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-iota 4993 df-fun 5030 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-pnf 7585 df-mnf 7586 df-xr 7587 df-ltxr 7588 df-le 7589 df-sub 7716 df-neg 7717 df-inn 8484 df-n0 8735 df-z 8812 |
This theorem is referenced by: zaddcllemneg 8850 zlem1lt 8867 zltlem1 8868 zextlt 8899 zeo 8912 eluzp1m1 9103 fz01en 9528 fzsuc2 9554 elfzm11 9566 uzdisj 9568 fzof 9616 fzoval 9620 elfzo 9621 fzodcel 9624 fzon 9638 fzoss2 9644 fzossrbm1 9645 fzosplitsnm1 9681 ubmelm1fzo 9698 elfzom1b 9701 fzosplitprm1 9706 fzoshftral 9710 fzofig 9900 uzsinds 9909 isermono 9967 iseqf1olemqcl 9976 iseqf1olemnab 9978 iseqf1olemab 9979 seq3f1olemqsumkj 9988 seq3f1olemqsum 9990 bcm1k 10229 bcn2 10233 bcp1m1 10234 bcpasc 10235 bccl 10236 zfz1isolemiso 10305 iseqcoll 10308 resqrexlemcalc3 10510 resqrexlemnm 10512 fsumm1 10871 binomlem 10938 binom1dif 10942 isumsplit 10946 arisum2 10954 pwm1geoserap1 10963 mertenslemi1 10990 zeo3 11207 oddm1even 11214 oddp1even 11215 zob 11230 nno 11245 isprm3 11439 phibnd 11532 hashdvds 11536 oddennn 11544 |
Copyright terms: Public domain | W3C validator |