Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2zm | GIF version |
Description: "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
Ref | Expression |
---|---|
peano2zm | ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 9192 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | 1cnd 7911 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
3 | 1, 2 | negsubdid 8220 | . . 3 ⊢ (𝑁 ∈ ℤ → -(𝑁 − 1) = (-𝑁 + 1)) |
4 | znegcl 9218 | . . . 4 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
5 | peano2z 9223 | . . . 4 ⊢ (-𝑁 ∈ ℤ → (-𝑁 + 1) ∈ ℤ) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℤ → (-𝑁 + 1) ∈ ℤ) |
7 | 3, 6 | eqeltrd 2242 | . 2 ⊢ (𝑁 ∈ ℤ → -(𝑁 − 1) ∈ ℤ) |
8 | 1, 2 | subcld 8205 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ) |
9 | znegclb 9220 | . . 3 ⊢ ((𝑁 − 1) ∈ ℂ → ((𝑁 − 1) ∈ ℤ ↔ -(𝑁 − 1) ∈ ℤ)) | |
10 | 8, 9 | syl 14 | . 2 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) ∈ ℤ ↔ -(𝑁 − 1) ∈ ℤ)) |
11 | 7, 10 | mpbird 166 | 1 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 2136 (class class class)co 5841 ℂcc 7747 1c1 7750 + caddc 7752 − cmin 8065 -cneg 8066 ℤcz 9187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 |
This theorem is referenced by: zaddcllemneg 9226 zlem1lt 9243 zltlem1 9244 zextlt 9279 zeo 9292 eluzp1m1 9485 fz01en 9984 fzsuc2 10010 elfzm11 10022 uzdisj 10024 fzof 10075 fzoval 10079 elfzo 10080 fzodcel 10083 fzon 10097 fzoss2 10103 fzossrbm1 10104 fzosplitsnm1 10140 ubmelm1fzo 10157 elfzom1b 10160 fzosplitprm1 10165 fzoshftral 10169 fzofig 10363 uzsinds 10373 ser3mono 10409 iseqf1olemqcl 10417 iseqf1olemnab 10419 iseqf1olemab 10420 seq3f1olemqsumkj 10429 seq3f1olemqsum 10431 bcm1k 10669 bcn2 10673 bcp1m1 10674 bcpasc 10675 bccl 10676 zfz1isolemiso 10748 seq3coll 10751 resqrexlemcalc3 10954 resqrexlemnm 10956 fsumm1 11353 binomlem 11420 binom1dif 11424 isumsplit 11428 arisum2 11436 pwm1geoserap1 11445 mertenslemi1 11472 fprodm1 11535 fprodeq0 11554 zeo3 11801 oddm1even 11808 oddp1even 11809 zob 11824 nno 11839 isprm3 12046 prmdc 12058 isprm5 12070 phibnd 12145 hashdvds 12149 odzcllem 12170 odzdvds 12173 fldivp1 12274 pockthlem 12282 oddennn 12321 lgslem1 13501 lgsval2lem 13511 2sqlem8 13559 |
Copyright terms: Public domain | W3C validator |