Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2zm | GIF version |
Description: "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
Ref | Expression |
---|---|
peano2zm | ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 9217 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | 1cnd 7936 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
3 | 1, 2 | negsubdid 8245 | . . 3 ⊢ (𝑁 ∈ ℤ → -(𝑁 − 1) = (-𝑁 + 1)) |
4 | znegcl 9243 | . . . 4 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
5 | peano2z 9248 | . . . 4 ⊢ (-𝑁 ∈ ℤ → (-𝑁 + 1) ∈ ℤ) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℤ → (-𝑁 + 1) ∈ ℤ) |
7 | 3, 6 | eqeltrd 2247 | . 2 ⊢ (𝑁 ∈ ℤ → -(𝑁 − 1) ∈ ℤ) |
8 | 1, 2 | subcld 8230 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ) |
9 | znegclb 9245 | . . 3 ⊢ ((𝑁 − 1) ∈ ℂ → ((𝑁 − 1) ∈ ℤ ↔ -(𝑁 − 1) ∈ ℤ)) | |
10 | 8, 9 | syl 14 | . 2 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) ∈ ℤ ↔ -(𝑁 − 1) ∈ ℤ)) |
11 | 7, 10 | mpbird 166 | 1 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 1c1 7775 + caddc 7777 − cmin 8090 -cneg 8091 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: zaddcllemneg 9251 zlem1lt 9268 zltlem1 9269 zextlt 9304 zeo 9317 eluzp1m1 9510 fz01en 10009 fzsuc2 10035 elfzm11 10047 uzdisj 10049 fzof 10100 fzoval 10104 elfzo 10105 fzodcel 10108 fzon 10122 fzoss2 10128 fzossrbm1 10129 fzosplitsnm1 10165 ubmelm1fzo 10182 elfzom1b 10185 fzosplitprm1 10190 fzoshftral 10194 fzofig 10388 uzsinds 10398 ser3mono 10434 iseqf1olemqcl 10442 iseqf1olemnab 10444 iseqf1olemab 10445 seq3f1olemqsumkj 10454 seq3f1olemqsum 10456 bcm1k 10694 bcn2 10698 bcp1m1 10699 bcpasc 10700 bccl 10701 zfz1isolemiso 10774 seq3coll 10777 resqrexlemcalc3 10980 resqrexlemnm 10982 fsumm1 11379 binomlem 11446 binom1dif 11450 isumsplit 11454 arisum2 11462 pwm1geoserap1 11471 mertenslemi1 11498 fprodm1 11561 fprodeq0 11580 zeo3 11827 oddm1even 11834 oddp1even 11835 zob 11850 nno 11865 isprm3 12072 prmdc 12084 isprm5 12096 phibnd 12171 hashdvds 12175 odzcllem 12196 odzdvds 12199 fldivp1 12300 pockthlem 12308 oddennn 12347 lgslem1 13695 lgsval2lem 13705 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |