MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nrp Structured version   Visualization version   GIF version

Theorem 0nrp 12858
Description: Zero is not a positive real. Axiom 9 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
Assertion
Ref Expression
0nrp ¬ 0 ∈ ℝ+

Proof of Theorem 0nrp
StepHypRef Expression
1 0re 11070 . . 3 0 ∈ ℝ
21ltnri 11177 . 2 ¬ 0 < 0
3 rpgt0 12835 . 2 (0 ∈ ℝ+ → 0 < 0)
42, 3mto 196 1 ¬ 0 ∈ ℝ+
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2105   class class class wbr 5089  0cc0 10964   < clt 11102  +crp 12823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-resscn 11021  ax-1cn 11022  ax-addrcl 11025  ax-rnegex 11035  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-po 5526  df-so 5527  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-ltxr 11107  df-rp 12824
This theorem is referenced by:  itg2gt0  25023  dvrelog  25890  logdmn0  25893  logdivsqrle  32871  dvrelog2  40319  dvrelog3  40320  elbigolo1  46243
  Copyright terms: Public domain W3C validator