MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsubrp Structured version   Visualization version   GIF version

Theorem ltsubrp 12622
Description: Subtracting a positive real from another number decreases it. (Contributed by FL, 27-Dec-2007.)
Assertion
Ref Expression
ltsubrp ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴𝐵) < 𝐴)

Proof of Theorem ltsubrp
StepHypRef Expression
1 elrp 12588 . 2 (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵))
2 ltsubpos 11324 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐵 ↔ (𝐴𝐵) < 𝐴))
32biimpd 232 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐵 → (𝐴𝐵) < 𝐴))
43expcom 417 . . 3 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐵 → (𝐴𝐵) < 𝐴)))
54imp32 422 . 2 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴𝐵) < 𝐴)
61, 5sylan2b 597 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴𝐵) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2110   class class class wbr 5053  (class class class)co 7213  cr 10728  0cc0 10729   < clt 10867  cmin 11062  +crp 12586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-ltxr 10872  df-sub 11064  df-neg 11065  df-rp 12587
This theorem is referenced by:  ltsubrpd  12660  bcval5  13884  climsup  15233  supcvg  15420  prmreclem6  16474  psgnunilem4  18889  iccntr  23718  reconnlem2  23724  opnreen  23728  ivthlem3  24350  leibpi  25825  chtppilim  26356  chto1ub  26357  dpmul4  30908  poimir  35547  ftc1anclem5  35591  stoweidlem59  43275  fouriersw  43447
  Copyright terms: Public domain W3C validator