| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvrelog | Structured version Visualization version GIF version | ||
| Description: The derivative of the real logarithm function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvrelog | ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrelog 26490 | . . 3 ⊢ (log ↾ ℝ+) = ◡(exp ↾ ℝ) | |
| 2 | 1 | oveq2i 7364 | . 2 ⊢ (ℝ D (log ↾ ℝ+)) = (ℝ D ◡(exp ↾ ℝ)) |
| 3 | reeff1o 26373 | . . . . . . . . 9 ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ | |
| 4 | f1of 6768 | . . . . . . . . 9 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . . 8 ⊢ (exp ↾ ℝ):ℝ⟶ℝ+ |
| 6 | rpssre 12919 | . . . . . . . 8 ⊢ ℝ+ ⊆ ℝ | |
| 7 | fss 6672 | . . . . . . . 8 ⊢ (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . . . . 7 ⊢ (exp ↾ ℝ):ℝ⟶ℝ |
| 9 | ax-resscn 11085 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 10 | efcn 26369 | . . . . . . . . 9 ⊢ exp ∈ (ℂ–cn→ℂ) | |
| 11 | rescncf 24806 | . . . . . . . . 9 ⊢ (ℝ ⊆ ℂ → (exp ∈ (ℂ–cn→ℂ) → (exp ↾ ℝ) ∈ (ℝ–cn→ℂ))) | |
| 12 | 9, 10, 11 | mp2 9 | . . . . . . . 8 ⊢ (exp ↾ ℝ) ∈ (ℝ–cn→ℂ) |
| 13 | cncfcdm 24807 | . . . . . . . 8 ⊢ ((ℝ ⊆ ℂ ∧ (exp ↾ ℝ) ∈ (ℝ–cn→ℂ)) → ((exp ↾ ℝ) ∈ (ℝ–cn→ℝ) ↔ (exp ↾ ℝ):ℝ⟶ℝ)) | |
| 14 | 9, 12, 13 | mp2an 692 | . . . . . . 7 ⊢ ((exp ↾ ℝ) ∈ (ℝ–cn→ℝ) ↔ (exp ↾ ℝ):ℝ⟶ℝ) |
| 15 | 8, 14 | mpbir 231 | . . . . . 6 ⊢ (exp ↾ ℝ) ∈ (ℝ–cn→ℝ) |
| 16 | 15 | a1i 11 | . . . . 5 ⊢ (⊤ → (exp ↾ ℝ) ∈ (ℝ–cn→ℝ)) |
| 17 | reelprrecn 11120 | . . . . . . . . . 10 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 18 | eff 16006 | . . . . . . . . . 10 ⊢ exp:ℂ⟶ℂ | |
| 19 | ssid 3960 | . . . . . . . . . 10 ⊢ ℂ ⊆ ℂ | |
| 20 | dvef 25900 | . . . . . . . . . . . . 13 ⊢ (ℂ D exp) = exp | |
| 21 | 20 | dmeqi 5851 | . . . . . . . . . . . 12 ⊢ dom (ℂ D exp) = dom exp |
| 22 | 18 | fdmi 6667 | . . . . . . . . . . . 12 ⊢ dom exp = ℂ |
| 23 | 21, 22 | eqtri 2752 | . . . . . . . . . . 11 ⊢ dom (ℂ D exp) = ℂ |
| 24 | 9, 23 | sseqtrri 3987 | . . . . . . . . . 10 ⊢ ℝ ⊆ dom (ℂ D exp) |
| 25 | dvres3 25830 | . . . . . . . . . 10 ⊢ (((ℝ ∈ {ℝ, ℂ} ∧ exp:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D exp))) → (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ)) | |
| 26 | 17, 18, 19, 24, 25 | mp4an 693 | . . . . . . . . 9 ⊢ (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ) |
| 27 | 20 | reseq1i 5930 | . . . . . . . . 9 ⊢ ((ℂ D exp) ↾ ℝ) = (exp ↾ ℝ) |
| 28 | 26, 27 | eqtri 2752 | . . . . . . . 8 ⊢ (ℝ D (exp ↾ ℝ)) = (exp ↾ ℝ) |
| 29 | 28 | dmeqi 5851 | . . . . . . 7 ⊢ dom (ℝ D (exp ↾ ℝ)) = dom (exp ↾ ℝ) |
| 30 | 5 | fdmi 6667 | . . . . . . 7 ⊢ dom (exp ↾ ℝ) = ℝ |
| 31 | 29, 30 | eqtri 2752 | . . . . . 6 ⊢ dom (ℝ D (exp ↾ ℝ)) = ℝ |
| 32 | 31 | a1i 11 | . . . . 5 ⊢ (⊤ → dom (ℝ D (exp ↾ ℝ)) = ℝ) |
| 33 | 0nrp 12948 | . . . . . . 7 ⊢ ¬ 0 ∈ ℝ+ | |
| 34 | 28 | rneqi 5883 | . . . . . . . . 9 ⊢ ran (ℝ D (exp ↾ ℝ)) = ran (exp ↾ ℝ) |
| 35 | f1ofo 6775 | . . . . . . . . . 10 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ–onto→ℝ+) | |
| 36 | forn 6743 | . . . . . . . . . 10 ⊢ ((exp ↾ ℝ):ℝ–onto→ℝ+ → ran (exp ↾ ℝ) = ℝ+) | |
| 37 | 3, 35, 36 | mp2b 10 | . . . . . . . . 9 ⊢ ran (exp ↾ ℝ) = ℝ+ |
| 38 | 34, 37 | eqtri 2752 | . . . . . . . 8 ⊢ ran (ℝ D (exp ↾ ℝ)) = ℝ+ |
| 39 | 38 | eleq2i 2820 | . . . . . . 7 ⊢ (0 ∈ ran (ℝ D (exp ↾ ℝ)) ↔ 0 ∈ ℝ+) |
| 40 | 33, 39 | mtbir 323 | . . . . . 6 ⊢ ¬ 0 ∈ ran (ℝ D (exp ↾ ℝ)) |
| 41 | 40 | a1i 11 | . . . . 5 ⊢ (⊤ → ¬ 0 ∈ ran (ℝ D (exp ↾ ℝ))) |
| 42 | 3 | a1i 11 | . . . . 5 ⊢ (⊤ → (exp ↾ ℝ):ℝ–1-1-onto→ℝ+) |
| 43 | 16, 32, 41, 42 | dvcnvre 25940 | . . . 4 ⊢ (⊤ → (ℝ D ◡(exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥))))) |
| 44 | 43 | mptru 1547 | . . 3 ⊢ (ℝ D ◡(exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥)))) |
| 45 | 28 | fveq1i 6827 | . . . . . 6 ⊢ ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥)) = ((exp ↾ ℝ)‘(◡(exp ↾ ℝ)‘𝑥)) |
| 46 | f1ocnvfv2 7218 | . . . . . . 7 ⊢ (((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ∧ 𝑥 ∈ ℝ+) → ((exp ↾ ℝ)‘(◡(exp ↾ ℝ)‘𝑥)) = 𝑥) | |
| 47 | 3, 46 | mpan 690 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → ((exp ↾ ℝ)‘(◡(exp ↾ ℝ)‘𝑥)) = 𝑥) |
| 48 | 45, 47 | eqtrid 2776 | . . . . 5 ⊢ (𝑥 ∈ ℝ+ → ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥)) = 𝑥) |
| 49 | 48 | oveq2d 7369 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → (1 / ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥))) = (1 / 𝑥)) |
| 50 | 49 | mpteq2ia 5190 | . . 3 ⊢ (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) |
| 51 | 44, 50 | eqtri 2752 | . 2 ⊢ (ℝ D ◡(exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) |
| 52 | 2, 51 | eqtri 2752 | 1 ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ⊆ wss 3905 {cpr 4581 ↦ cmpt 5176 ◡ccnv 5622 dom cdm 5623 ran crn 5624 ↾ cres 5625 ⟶wf 6482 –onto→wfo 6484 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 / cdiv 11795 ℝ+crp 12911 expce 15986 –cn→ccncf 24785 D cdv 25780 logclog 26479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ioc 13271 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-fac 14199 df-bc 14228 df-hash 14256 df-shft 14992 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-limsup 15396 df-clim 15413 df-rlim 15414 df-sum 15612 df-ef 15992 df-sin 15994 df-cos 15995 df-pi 15997 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-cmp 23290 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-limc 25783 df-dv 25784 df-log 26481 |
| This theorem is referenced by: relogcn 26563 advlog 26579 advlogexp 26580 logccv 26588 dvcxp1 26665 loglesqrt 26687 logdivsum 27460 log2sumbnd 27471 logdivsqrle 34617 dvrelog2 42037 dvrelog3 42038 |
| Copyright terms: Public domain | W3C validator |