![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvrelog | Structured version Visualization version GIF version |
Description: The derivative of the real logarithm function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
dvrelog | β’ (β D (log βΎ β+)) = (π₯ β β+ β¦ (1 / π₯)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrelog 26517 | . . 3 β’ (log βΎ β+) = β‘(exp βΎ β) | |
2 | 1 | oveq2i 7435 | . 2 β’ (β D (log βΎ β+)) = (β D β‘(exp βΎ β)) |
3 | reeff1o 26402 | . . . . . . . . 9 β’ (exp βΎ β):ββ1-1-ontoββ+ | |
4 | f1of 6842 | . . . . . . . . 9 β’ ((exp βΎ β):ββ1-1-ontoββ+ β (exp βΎ β):ββΆβ+) | |
5 | 3, 4 | ax-mp 5 | . . . . . . . 8 β’ (exp βΎ β):ββΆβ+ |
6 | rpssre 13019 | . . . . . . . 8 β’ β+ β β | |
7 | fss 6742 | . . . . . . . 8 β’ (((exp βΎ β):ββΆβ+ β§ β+ β β) β (exp βΎ β):ββΆβ) | |
8 | 5, 6, 7 | mp2an 690 | . . . . . . 7 β’ (exp βΎ β):ββΆβ |
9 | ax-resscn 11201 | . . . . . . . 8 β’ β β β | |
10 | efcn 26398 | . . . . . . . . 9 β’ exp β (ββcnββ) | |
11 | rescncf 24835 | . . . . . . . . 9 β’ (β β β β (exp β (ββcnββ) β (exp βΎ β) β (ββcnββ))) | |
12 | 9, 10, 11 | mp2 9 | . . . . . . . 8 β’ (exp βΎ β) β (ββcnββ) |
13 | cncfcdm 24836 | . . . . . . . 8 β’ ((β β β β§ (exp βΎ β) β (ββcnββ)) β ((exp βΎ β) β (ββcnββ) β (exp βΎ β):ββΆβ)) | |
14 | 9, 12, 13 | mp2an 690 | . . . . . . 7 β’ ((exp βΎ β) β (ββcnββ) β (exp βΎ β):ββΆβ) |
15 | 8, 14 | mpbir 230 | . . . . . 6 β’ (exp βΎ β) β (ββcnββ) |
16 | 15 | a1i 11 | . . . . 5 β’ (β€ β (exp βΎ β) β (ββcnββ)) |
17 | reelprrecn 11236 | . . . . . . . . . 10 β’ β β {β, β} | |
18 | eff 16063 | . . . . . . . . . 10 β’ exp:ββΆβ | |
19 | ssid 4002 | . . . . . . . . . 10 β’ β β β | |
20 | dvef 25930 | . . . . . . . . . . . . 13 β’ (β D exp) = exp | |
21 | 20 | dmeqi 5909 | . . . . . . . . . . . 12 β’ dom (β D exp) = dom exp |
22 | 18 | fdmi 6737 | . . . . . . . . . . . 12 β’ dom exp = β |
23 | 21, 22 | eqtri 2755 | . . . . . . . . . . 11 β’ dom (β D exp) = β |
24 | 9, 23 | sseqtrri 4017 | . . . . . . . . . 10 β’ β β dom (β D exp) |
25 | dvres3 25860 | . . . . . . . . . 10 β’ (((β β {β, β} β§ exp:ββΆβ) β§ (β β β β§ β β dom (β D exp))) β (β D (exp βΎ β)) = ((β D exp) βΎ β)) | |
26 | 17, 18, 19, 24, 25 | mp4an 691 | . . . . . . . . 9 β’ (β D (exp βΎ β)) = ((β D exp) βΎ β) |
27 | 20 | reseq1i 5983 | . . . . . . . . 9 β’ ((β D exp) βΎ β) = (exp βΎ β) |
28 | 26, 27 | eqtri 2755 | . . . . . . . 8 β’ (β D (exp βΎ β)) = (exp βΎ β) |
29 | 28 | dmeqi 5909 | . . . . . . 7 β’ dom (β D (exp βΎ β)) = dom (exp βΎ β) |
30 | 5 | fdmi 6737 | . . . . . . 7 β’ dom (exp βΎ β) = β |
31 | 29, 30 | eqtri 2755 | . . . . . 6 β’ dom (β D (exp βΎ β)) = β |
32 | 31 | a1i 11 | . . . . 5 β’ (β€ β dom (β D (exp βΎ β)) = β) |
33 | 0nrp 13047 | . . . . . . 7 β’ Β¬ 0 β β+ | |
34 | 28 | rneqi 5941 | . . . . . . . . 9 β’ ran (β D (exp βΎ β)) = ran (exp βΎ β) |
35 | f1ofo 6849 | . . . . . . . . . 10 β’ ((exp βΎ β):ββ1-1-ontoββ+ β (exp βΎ β):ββontoββ+) | |
36 | forn 6817 | . . . . . . . . . 10 β’ ((exp βΎ β):ββontoββ+ β ran (exp βΎ β) = β+) | |
37 | 3, 35, 36 | mp2b 10 | . . . . . . . . 9 β’ ran (exp βΎ β) = β+ |
38 | 34, 37 | eqtri 2755 | . . . . . . . 8 β’ ran (β D (exp βΎ β)) = β+ |
39 | 38 | eleq2i 2820 | . . . . . . 7 β’ (0 β ran (β D (exp βΎ β)) β 0 β β+) |
40 | 33, 39 | mtbir 322 | . . . . . 6 β’ Β¬ 0 β ran (β D (exp βΎ β)) |
41 | 40 | a1i 11 | . . . . 5 β’ (β€ β Β¬ 0 β ran (β D (exp βΎ β))) |
42 | 3 | a1i 11 | . . . . 5 β’ (β€ β (exp βΎ β):ββ1-1-ontoββ+) |
43 | 16, 32, 41, 42 | dvcnvre 25970 | . . . 4 β’ (β€ β (β D β‘(exp βΎ β)) = (π₯ β β+ β¦ (1 / ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯))))) |
44 | 43 | mptru 1540 | . . 3 β’ (β D β‘(exp βΎ β)) = (π₯ β β+ β¦ (1 / ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯)))) |
45 | 28 | fveq1i 6901 | . . . . . 6 β’ ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯)) = ((exp βΎ β)β(β‘(exp βΎ β)βπ₯)) |
46 | f1ocnvfv2 7290 | . . . . . . 7 β’ (((exp βΎ β):ββ1-1-ontoββ+ β§ π₯ β β+) β ((exp βΎ β)β(β‘(exp βΎ β)βπ₯)) = π₯) | |
47 | 3, 46 | mpan 688 | . . . . . 6 β’ (π₯ β β+ β ((exp βΎ β)β(β‘(exp βΎ β)βπ₯)) = π₯) |
48 | 45, 47 | eqtrid 2779 | . . . . 5 β’ (π₯ β β+ β ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯)) = π₯) |
49 | 48 | oveq2d 7440 | . . . 4 β’ (π₯ β β+ β (1 / ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯))) = (1 / π₯)) |
50 | 49 | mpteq2ia 5253 | . . 3 β’ (π₯ β β+ β¦ (1 / ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯)))) = (π₯ β β+ β¦ (1 / π₯)) |
51 | 44, 50 | eqtri 2755 | . 2 β’ (β D β‘(exp βΎ β)) = (π₯ β β+ β¦ (1 / π₯)) |
52 | 2, 51 | eqtri 2755 | 1 β’ (β D (log βΎ β+)) = (π₯ β β+ β¦ (1 / π₯)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wb 205 = wceq 1533 β€wtru 1534 β wcel 2098 β wss 3947 {cpr 4632 β¦ cmpt 5233 β‘ccnv 5679 dom cdm 5680 ran crn 5681 βΎ cres 5682 βΆwf 6547 βontoβwfo 6549 β1-1-ontoβwf1o 6550 βcfv 6551 (class class class)co 7424 βcc 11142 βcr 11143 0cc0 11144 1c1 11145 / cdiv 11907 β+crp 13012 expce 16043 βcnβccncf 24814 D cdv 25810 logclog 26506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-inf2 9670 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 ax-addf 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-iin 5001 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7689 df-om 7875 df-1st 7997 df-2nd 7998 df-supp 8170 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-2o 8492 df-er 8729 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9392 df-fi 9440 df-sup 9471 df-inf 9472 df-oi 9539 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-z 12595 df-dec 12714 df-uz 12859 df-q 12969 df-rp 13013 df-xneg 13130 df-xadd 13131 df-xmul 13132 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13523 df-fzo 13666 df-fl 13795 df-mod 13873 df-seq 14005 df-exp 14065 df-fac 14271 df-bc 14300 df-hash 14328 df-shft 15052 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-limsup 15453 df-clim 15470 df-rlim 15471 df-sum 15671 df-ef 16049 df-sin 16051 df-cos 16052 df-pi 16054 df-struct 17121 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-ress 17215 df-plusg 17251 df-mulr 17252 df-starv 17253 df-sca 17254 df-vsca 17255 df-ip 17256 df-tset 17257 df-ple 17258 df-ds 17260 df-unif 17261 df-hom 17262 df-cco 17263 df-rest 17409 df-topn 17410 df-0g 17428 df-gsum 17429 df-topgen 17430 df-pt 17431 df-prds 17434 df-xrs 17489 df-qtop 17494 df-imas 17495 df-xps 17497 df-mre 17571 df-mrc 17572 df-acs 17574 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-submnd 18746 df-mulg 19029 df-cntz 19273 df-cmn 19742 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-fbas 21281 df-fg 21282 df-cnfld 21285 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22867 df-cld 22941 df-ntr 22942 df-cls 22943 df-nei 23020 df-lp 23058 df-perf 23059 df-cn 23149 df-cnp 23150 df-haus 23237 df-cmp 23309 df-tx 23484 df-hmeo 23677 df-fil 23768 df-fm 23860 df-flim 23861 df-flf 23862 df-xms 24244 df-ms 24245 df-tms 24246 df-cncf 24816 df-limc 25813 df-dv 25814 df-log 26508 |
This theorem is referenced by: relogcn 26590 advlog 26606 advlogexp 26607 logccv 26615 dvcxp1 26692 loglesqrt 26711 logdivsum 27484 log2sumbnd 27495 logdivsqrle 34287 dvrelog2 41539 dvrelog3 41540 |
Copyright terms: Public domain | W3C validator |