| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvrelog | Structured version Visualization version GIF version | ||
| Description: The derivative of the real logarithm function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvrelog | ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrelog 26499 | . . 3 ⊢ (log ↾ ℝ+) = ◡(exp ↾ ℝ) | |
| 2 | 1 | oveq2i 7357 | . 2 ⊢ (ℝ D (log ↾ ℝ+)) = (ℝ D ◡(exp ↾ ℝ)) |
| 3 | reeff1o 26382 | . . . . . . . . 9 ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ | |
| 4 | f1of 6763 | . . . . . . . . 9 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . . 8 ⊢ (exp ↾ ℝ):ℝ⟶ℝ+ |
| 6 | rpssre 12895 | . . . . . . . 8 ⊢ ℝ+ ⊆ ℝ | |
| 7 | fss 6667 | . . . . . . . 8 ⊢ (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . . . . 7 ⊢ (exp ↾ ℝ):ℝ⟶ℝ |
| 9 | ax-resscn 11060 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 10 | efcn 26378 | . . . . . . . . 9 ⊢ exp ∈ (ℂ–cn→ℂ) | |
| 11 | rescncf 24815 | . . . . . . . . 9 ⊢ (ℝ ⊆ ℂ → (exp ∈ (ℂ–cn→ℂ) → (exp ↾ ℝ) ∈ (ℝ–cn→ℂ))) | |
| 12 | 9, 10, 11 | mp2 9 | . . . . . . . 8 ⊢ (exp ↾ ℝ) ∈ (ℝ–cn→ℂ) |
| 13 | cncfcdm 24816 | . . . . . . . 8 ⊢ ((ℝ ⊆ ℂ ∧ (exp ↾ ℝ) ∈ (ℝ–cn→ℂ)) → ((exp ↾ ℝ) ∈ (ℝ–cn→ℝ) ↔ (exp ↾ ℝ):ℝ⟶ℝ)) | |
| 14 | 9, 12, 13 | mp2an 692 | . . . . . . 7 ⊢ ((exp ↾ ℝ) ∈ (ℝ–cn→ℝ) ↔ (exp ↾ ℝ):ℝ⟶ℝ) |
| 15 | 8, 14 | mpbir 231 | . . . . . 6 ⊢ (exp ↾ ℝ) ∈ (ℝ–cn→ℝ) |
| 16 | 15 | a1i 11 | . . . . 5 ⊢ (⊤ → (exp ↾ ℝ) ∈ (ℝ–cn→ℝ)) |
| 17 | reelprrecn 11095 | . . . . . . . . . 10 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 18 | eff 15985 | . . . . . . . . . 10 ⊢ exp:ℂ⟶ℂ | |
| 19 | ssid 3957 | . . . . . . . . . 10 ⊢ ℂ ⊆ ℂ | |
| 20 | dvef 25909 | . . . . . . . . . . . . 13 ⊢ (ℂ D exp) = exp | |
| 21 | 20 | dmeqi 5844 | . . . . . . . . . . . 12 ⊢ dom (ℂ D exp) = dom exp |
| 22 | 18 | fdmi 6662 | . . . . . . . . . . . 12 ⊢ dom exp = ℂ |
| 23 | 21, 22 | eqtri 2754 | . . . . . . . . . . 11 ⊢ dom (ℂ D exp) = ℂ |
| 24 | 9, 23 | sseqtrri 3984 | . . . . . . . . . 10 ⊢ ℝ ⊆ dom (ℂ D exp) |
| 25 | dvres3 25839 | . . . . . . . . . 10 ⊢ (((ℝ ∈ {ℝ, ℂ} ∧ exp:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D exp))) → (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ)) | |
| 26 | 17, 18, 19, 24, 25 | mp4an 693 | . . . . . . . . 9 ⊢ (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ) |
| 27 | 20 | reseq1i 5924 | . . . . . . . . 9 ⊢ ((ℂ D exp) ↾ ℝ) = (exp ↾ ℝ) |
| 28 | 26, 27 | eqtri 2754 | . . . . . . . 8 ⊢ (ℝ D (exp ↾ ℝ)) = (exp ↾ ℝ) |
| 29 | 28 | dmeqi 5844 | . . . . . . 7 ⊢ dom (ℝ D (exp ↾ ℝ)) = dom (exp ↾ ℝ) |
| 30 | 5 | fdmi 6662 | . . . . . . 7 ⊢ dom (exp ↾ ℝ) = ℝ |
| 31 | 29, 30 | eqtri 2754 | . . . . . 6 ⊢ dom (ℝ D (exp ↾ ℝ)) = ℝ |
| 32 | 31 | a1i 11 | . . . . 5 ⊢ (⊤ → dom (ℝ D (exp ↾ ℝ)) = ℝ) |
| 33 | 0nrp 12924 | . . . . . . 7 ⊢ ¬ 0 ∈ ℝ+ | |
| 34 | 28 | rneqi 5877 | . . . . . . . . 9 ⊢ ran (ℝ D (exp ↾ ℝ)) = ran (exp ↾ ℝ) |
| 35 | f1ofo 6770 | . . . . . . . . . 10 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ–onto→ℝ+) | |
| 36 | forn 6738 | . . . . . . . . . 10 ⊢ ((exp ↾ ℝ):ℝ–onto→ℝ+ → ran (exp ↾ ℝ) = ℝ+) | |
| 37 | 3, 35, 36 | mp2b 10 | . . . . . . . . 9 ⊢ ran (exp ↾ ℝ) = ℝ+ |
| 38 | 34, 37 | eqtri 2754 | . . . . . . . 8 ⊢ ran (ℝ D (exp ↾ ℝ)) = ℝ+ |
| 39 | 38 | eleq2i 2823 | . . . . . . 7 ⊢ (0 ∈ ran (ℝ D (exp ↾ ℝ)) ↔ 0 ∈ ℝ+) |
| 40 | 33, 39 | mtbir 323 | . . . . . 6 ⊢ ¬ 0 ∈ ran (ℝ D (exp ↾ ℝ)) |
| 41 | 40 | a1i 11 | . . . . 5 ⊢ (⊤ → ¬ 0 ∈ ran (ℝ D (exp ↾ ℝ))) |
| 42 | 3 | a1i 11 | . . . . 5 ⊢ (⊤ → (exp ↾ ℝ):ℝ–1-1-onto→ℝ+) |
| 43 | 16, 32, 41, 42 | dvcnvre 25949 | . . . 4 ⊢ (⊤ → (ℝ D ◡(exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥))))) |
| 44 | 43 | mptru 1548 | . . 3 ⊢ (ℝ D ◡(exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥)))) |
| 45 | 28 | fveq1i 6823 | . . . . . 6 ⊢ ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥)) = ((exp ↾ ℝ)‘(◡(exp ↾ ℝ)‘𝑥)) |
| 46 | f1ocnvfv2 7211 | . . . . . . 7 ⊢ (((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ∧ 𝑥 ∈ ℝ+) → ((exp ↾ ℝ)‘(◡(exp ↾ ℝ)‘𝑥)) = 𝑥) | |
| 47 | 3, 46 | mpan 690 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → ((exp ↾ ℝ)‘(◡(exp ↾ ℝ)‘𝑥)) = 𝑥) |
| 48 | 45, 47 | eqtrid 2778 | . . . . 5 ⊢ (𝑥 ∈ ℝ+ → ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥)) = 𝑥) |
| 49 | 48 | oveq2d 7362 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → (1 / ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥))) = (1 / 𝑥)) |
| 50 | 49 | mpteq2ia 5186 | . . 3 ⊢ (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) |
| 51 | 44, 50 | eqtri 2754 | . 2 ⊢ (ℝ D ◡(exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) |
| 52 | 2, 51 | eqtri 2754 | 1 ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ⊆ wss 3902 {cpr 4578 ↦ cmpt 5172 ◡ccnv 5615 dom cdm 5616 ran crn 5617 ↾ cres 5618 ⟶wf 6477 –onto→wfo 6479 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 ℝcr 11002 0cc0 11003 1c1 11004 / cdiv 11771 ℝ+crp 12887 expce 15965 –cn→ccncf 24794 D cdv 25789 logclog 26488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ioc 13247 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-fac 14178 df-bc 14207 df-hash 14235 df-shft 14971 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-limsup 15375 df-clim 15392 df-rlim 15393 df-sum 15591 df-ef 15971 df-sin 15973 df-cos 15974 df-pi 15976 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-fbas 21286 df-fg 21287 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-lp 23049 df-perf 23050 df-cn 23140 df-cnp 23141 df-haus 23228 df-cmp 23300 df-tx 23475 df-hmeo 23668 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-xms 24233 df-ms 24234 df-tms 24235 df-cncf 24796 df-limc 25792 df-dv 25793 df-log 26490 |
| This theorem is referenced by: relogcn 26572 advlog 26588 advlogexp 26589 logccv 26597 dvcxp1 26674 loglesqrt 26696 logdivsum 27469 log2sumbnd 27480 logdivsqrle 34658 dvrelog2 42096 dvrelog3 42097 |
| Copyright terms: Public domain | W3C validator |