MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrelog Structured version   Visualization version   GIF version

Theorem dvrelog 26562
Description: The derivative of the real logarithm function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Assertion
Ref Expression
dvrelog (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))

Proof of Theorem dvrelog
StepHypRef Expression
1 dfrelog 26490 . . 3 (log ↾ ℝ+) = (exp ↾ ℝ)
21oveq2i 7364 . 2 (ℝ D (log ↾ ℝ+)) = (ℝ D (exp ↾ ℝ))
3 reeff1o 26373 . . . . . . . . 9 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
4 f1of 6768 . . . . . . . . 9 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
53, 4ax-mp 5 . . . . . . . 8 (exp ↾ ℝ):ℝ⟶ℝ+
6 rpssre 12919 . . . . . . . 8 + ⊆ ℝ
7 fss 6672 . . . . . . . 8 (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ)
85, 6, 7mp2an 692 . . . . . . 7 (exp ↾ ℝ):ℝ⟶ℝ
9 ax-resscn 11085 . . . . . . . 8 ℝ ⊆ ℂ
10 efcn 26369 . . . . . . . . 9 exp ∈ (ℂ–cn→ℂ)
11 rescncf 24806 . . . . . . . . 9 (ℝ ⊆ ℂ → (exp ∈ (ℂ–cn→ℂ) → (exp ↾ ℝ) ∈ (ℝ–cn→ℂ)))
129, 10, 11mp2 9 . . . . . . . 8 (exp ↾ ℝ) ∈ (ℝ–cn→ℂ)
13 cncfcdm 24807 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ (exp ↾ ℝ) ∈ (ℝ–cn→ℂ)) → ((exp ↾ ℝ) ∈ (ℝ–cn→ℝ) ↔ (exp ↾ ℝ):ℝ⟶ℝ))
149, 12, 13mp2an 692 . . . . . . 7 ((exp ↾ ℝ) ∈ (ℝ–cn→ℝ) ↔ (exp ↾ ℝ):ℝ⟶ℝ)
158, 14mpbir 231 . . . . . 6 (exp ↾ ℝ) ∈ (ℝ–cn→ℝ)
1615a1i 11 . . . . 5 (⊤ → (exp ↾ ℝ) ∈ (ℝ–cn→ℝ))
17 reelprrecn 11120 . . . . . . . . . 10 ℝ ∈ {ℝ, ℂ}
18 eff 16006 . . . . . . . . . 10 exp:ℂ⟶ℂ
19 ssid 3960 . . . . . . . . . 10 ℂ ⊆ ℂ
20 dvef 25900 . . . . . . . . . . . . 13 (ℂ D exp) = exp
2120dmeqi 5851 . . . . . . . . . . . 12 dom (ℂ D exp) = dom exp
2218fdmi 6667 . . . . . . . . . . . 12 dom exp = ℂ
2321, 22eqtri 2752 . . . . . . . . . . 11 dom (ℂ D exp) = ℂ
249, 23sseqtrri 3987 . . . . . . . . . 10 ℝ ⊆ dom (ℂ D exp)
25 dvres3 25830 . . . . . . . . . 10 (((ℝ ∈ {ℝ, ℂ} ∧ exp:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D exp))) → (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ))
2617, 18, 19, 24, 25mp4an 693 . . . . . . . . 9 (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ)
2720reseq1i 5930 . . . . . . . . 9 ((ℂ D exp) ↾ ℝ) = (exp ↾ ℝ)
2826, 27eqtri 2752 . . . . . . . 8 (ℝ D (exp ↾ ℝ)) = (exp ↾ ℝ)
2928dmeqi 5851 . . . . . . 7 dom (ℝ D (exp ↾ ℝ)) = dom (exp ↾ ℝ)
305fdmi 6667 . . . . . . 7 dom (exp ↾ ℝ) = ℝ
3129, 30eqtri 2752 . . . . . 6 dom (ℝ D (exp ↾ ℝ)) = ℝ
3231a1i 11 . . . . 5 (⊤ → dom (ℝ D (exp ↾ ℝ)) = ℝ)
33 0nrp 12948 . . . . . . 7 ¬ 0 ∈ ℝ+
3428rneqi 5883 . . . . . . . . 9 ran (ℝ D (exp ↾ ℝ)) = ran (exp ↾ ℝ)
35 f1ofo 6775 . . . . . . . . . 10 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ–onto→ℝ+)
36 forn 6743 . . . . . . . . . 10 ((exp ↾ ℝ):ℝ–onto→ℝ+ → ran (exp ↾ ℝ) = ℝ+)
373, 35, 36mp2b 10 . . . . . . . . 9 ran (exp ↾ ℝ) = ℝ+
3834, 37eqtri 2752 . . . . . . . 8 ran (ℝ D (exp ↾ ℝ)) = ℝ+
3938eleq2i 2820 . . . . . . 7 (0 ∈ ran (ℝ D (exp ↾ ℝ)) ↔ 0 ∈ ℝ+)
4033, 39mtbir 323 . . . . . 6 ¬ 0 ∈ ran (ℝ D (exp ↾ ℝ))
4140a1i 11 . . . . 5 (⊤ → ¬ 0 ∈ ran (ℝ D (exp ↾ ℝ)))
423a1i 11 . . . . 5 (⊤ → (exp ↾ ℝ):ℝ–1-1-onto→ℝ+)
4316, 32, 41, 42dvcnvre 25940 . . . 4 (⊤ → (ℝ D (exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥)))))
4443mptru 1547 . . 3 (ℝ D (exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥))))
4528fveq1i 6827 . . . . . 6 ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥)) = ((exp ↾ ℝ)‘((exp ↾ ℝ)‘𝑥))
46 f1ocnvfv2 7218 . . . . . . 7 (((exp ↾ ℝ):ℝ–1-1-onto→ℝ+𝑥 ∈ ℝ+) → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘𝑥)) = 𝑥)
473, 46mpan 690 . . . . . 6 (𝑥 ∈ ℝ+ → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘𝑥)) = 𝑥)
4845, 47eqtrid 2776 . . . . 5 (𝑥 ∈ ℝ+ → ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥)) = 𝑥)
4948oveq2d 7369 . . . 4 (𝑥 ∈ ℝ+ → (1 / ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥))) = (1 / 𝑥))
5049mpteq2ia 5190 . . 3 (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
5144, 50eqtri 2752 . 2 (ℝ D (exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
522, 51eqtri 2752 1 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wtru 1541  wcel 2109  wss 3905  {cpr 4581  cmpt 5176  ccnv 5622  dom cdm 5623  ran crn 5624  cres 5625  wf 6482  ontowfo 6484  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   / cdiv 11795  +crp 12911  expce 15986  cnccncf 24785   D cdv 25780  logclog 26479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481
This theorem is referenced by:  relogcn  26563  advlog  26579  advlogexp  26580  logccv  26588  dvcxp1  26665  loglesqrt  26687  logdivsum  27460  log2sumbnd  27471  logdivsqrle  34617  dvrelog2  42037  dvrelog3  42038
  Copyright terms: Public domain W3C validator