![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvrelog | Structured version Visualization version GIF version |
Description: The derivative of the real logarithm function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
dvrelog | β’ (β D (log βΎ β+)) = (π₯ β β+ β¦ (1 / π₯)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrelog 26450 | . . 3 β’ (log βΎ β+) = β‘(exp βΎ β) | |
2 | 1 | oveq2i 7415 | . 2 β’ (β D (log βΎ β+)) = (β D β‘(exp βΎ β)) |
3 | reeff1o 26335 | . . . . . . . . 9 β’ (exp βΎ β):ββ1-1-ontoββ+ | |
4 | f1of 6826 | . . . . . . . . 9 β’ ((exp βΎ β):ββ1-1-ontoββ+ β (exp βΎ β):ββΆβ+) | |
5 | 3, 4 | ax-mp 5 | . . . . . . . 8 β’ (exp βΎ β):ββΆβ+ |
6 | rpssre 12984 | . . . . . . . 8 β’ β+ β β | |
7 | fss 6727 | . . . . . . . 8 β’ (((exp βΎ β):ββΆβ+ β§ β+ β β) β (exp βΎ β):ββΆβ) | |
8 | 5, 6, 7 | mp2an 689 | . . . . . . 7 β’ (exp βΎ β):ββΆβ |
9 | ax-resscn 11166 | . . . . . . . 8 β’ β β β | |
10 | efcn 26331 | . . . . . . . . 9 β’ exp β (ββcnββ) | |
11 | rescncf 24768 | . . . . . . . . 9 β’ (β β β β (exp β (ββcnββ) β (exp βΎ β) β (ββcnββ))) | |
12 | 9, 10, 11 | mp2 9 | . . . . . . . 8 β’ (exp βΎ β) β (ββcnββ) |
13 | cncfcdm 24769 | . . . . . . . 8 β’ ((β β β β§ (exp βΎ β) β (ββcnββ)) β ((exp βΎ β) β (ββcnββ) β (exp βΎ β):ββΆβ)) | |
14 | 9, 12, 13 | mp2an 689 | . . . . . . 7 β’ ((exp βΎ β) β (ββcnββ) β (exp βΎ β):ββΆβ) |
15 | 8, 14 | mpbir 230 | . . . . . 6 β’ (exp βΎ β) β (ββcnββ) |
16 | 15 | a1i 11 | . . . . 5 β’ (β€ β (exp βΎ β) β (ββcnββ)) |
17 | reelprrecn 11201 | . . . . . . . . . 10 β’ β β {β, β} | |
18 | eff 16029 | . . . . . . . . . 10 β’ exp:ββΆβ | |
19 | ssid 3999 | . . . . . . . . . 10 β’ β β β | |
20 | dvef 25863 | . . . . . . . . . . . . 13 β’ (β D exp) = exp | |
21 | 20 | dmeqi 5897 | . . . . . . . . . . . 12 β’ dom (β D exp) = dom exp |
22 | 18 | fdmi 6722 | . . . . . . . . . . . 12 β’ dom exp = β |
23 | 21, 22 | eqtri 2754 | . . . . . . . . . . 11 β’ dom (β D exp) = β |
24 | 9, 23 | sseqtrri 4014 | . . . . . . . . . 10 β’ β β dom (β D exp) |
25 | dvres3 25793 | . . . . . . . . . 10 β’ (((β β {β, β} β§ exp:ββΆβ) β§ (β β β β§ β β dom (β D exp))) β (β D (exp βΎ β)) = ((β D exp) βΎ β)) | |
26 | 17, 18, 19, 24, 25 | mp4an 690 | . . . . . . . . 9 β’ (β D (exp βΎ β)) = ((β D exp) βΎ β) |
27 | 20 | reseq1i 5970 | . . . . . . . . 9 β’ ((β D exp) βΎ β) = (exp βΎ β) |
28 | 26, 27 | eqtri 2754 | . . . . . . . 8 β’ (β D (exp βΎ β)) = (exp βΎ β) |
29 | 28 | dmeqi 5897 | . . . . . . 7 β’ dom (β D (exp βΎ β)) = dom (exp βΎ β) |
30 | 5 | fdmi 6722 | . . . . . . 7 β’ dom (exp βΎ β) = β |
31 | 29, 30 | eqtri 2754 | . . . . . 6 β’ dom (β D (exp βΎ β)) = β |
32 | 31 | a1i 11 | . . . . 5 β’ (β€ β dom (β D (exp βΎ β)) = β) |
33 | 0nrp 13012 | . . . . . . 7 β’ Β¬ 0 β β+ | |
34 | 28 | rneqi 5929 | . . . . . . . . 9 β’ ran (β D (exp βΎ β)) = ran (exp βΎ β) |
35 | f1ofo 6833 | . . . . . . . . . 10 β’ ((exp βΎ β):ββ1-1-ontoββ+ β (exp βΎ β):ββontoββ+) | |
36 | forn 6801 | . . . . . . . . . 10 β’ ((exp βΎ β):ββontoββ+ β ran (exp βΎ β) = β+) | |
37 | 3, 35, 36 | mp2b 10 | . . . . . . . . 9 β’ ran (exp βΎ β) = β+ |
38 | 34, 37 | eqtri 2754 | . . . . . . . 8 β’ ran (β D (exp βΎ β)) = β+ |
39 | 38 | eleq2i 2819 | . . . . . . 7 β’ (0 β ran (β D (exp βΎ β)) β 0 β β+) |
40 | 33, 39 | mtbir 323 | . . . . . 6 β’ Β¬ 0 β ran (β D (exp βΎ β)) |
41 | 40 | a1i 11 | . . . . 5 β’ (β€ β Β¬ 0 β ran (β D (exp βΎ β))) |
42 | 3 | a1i 11 | . . . . 5 β’ (β€ β (exp βΎ β):ββ1-1-ontoββ+) |
43 | 16, 32, 41, 42 | dvcnvre 25903 | . . . 4 β’ (β€ β (β D β‘(exp βΎ β)) = (π₯ β β+ β¦ (1 / ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯))))) |
44 | 43 | mptru 1540 | . . 3 β’ (β D β‘(exp βΎ β)) = (π₯ β β+ β¦ (1 / ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯)))) |
45 | 28 | fveq1i 6885 | . . . . . 6 β’ ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯)) = ((exp βΎ β)β(β‘(exp βΎ β)βπ₯)) |
46 | f1ocnvfv2 7270 | . . . . . . 7 β’ (((exp βΎ β):ββ1-1-ontoββ+ β§ π₯ β β+) β ((exp βΎ β)β(β‘(exp βΎ β)βπ₯)) = π₯) | |
47 | 3, 46 | mpan 687 | . . . . . 6 β’ (π₯ β β+ β ((exp βΎ β)β(β‘(exp βΎ β)βπ₯)) = π₯) |
48 | 45, 47 | eqtrid 2778 | . . . . 5 β’ (π₯ β β+ β ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯)) = π₯) |
49 | 48 | oveq2d 7420 | . . . 4 β’ (π₯ β β+ β (1 / ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯))) = (1 / π₯)) |
50 | 49 | mpteq2ia 5244 | . . 3 β’ (π₯ β β+ β¦ (1 / ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯)))) = (π₯ β β+ β¦ (1 / π₯)) |
51 | 44, 50 | eqtri 2754 | . 2 β’ (β D β‘(exp βΎ β)) = (π₯ β β+ β¦ (1 / π₯)) |
52 | 2, 51 | eqtri 2754 | 1 β’ (β D (log βΎ β+)) = (π₯ β β+ β¦ (1 / π₯)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wb 205 = wceq 1533 β€wtru 1534 β wcel 2098 β wss 3943 {cpr 4625 β¦ cmpt 5224 β‘ccnv 5668 dom cdm 5669 ran crn 5670 βΎ cres 5671 βΆwf 6532 βontoβwfo 6534 β1-1-ontoβwf1o 6535 βcfv 6536 (class class class)co 7404 βcc 11107 βcr 11108 0cc0 11109 1c1 11110 / cdiv 11872 β+crp 12977 expce 16009 βcnβccncf 24747 D cdv 25743 logclog 26439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8144 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-ioo 13331 df-ioc 13332 df-ico 13333 df-icc 13334 df-fz 13488 df-fzo 13631 df-fl 13760 df-mod 13838 df-seq 13970 df-exp 14031 df-fac 14237 df-bc 14266 df-hash 14294 df-shft 15018 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-limsup 15419 df-clim 15436 df-rlim 15437 df-sum 15637 df-ef 16015 df-sin 16017 df-cos 16018 df-pi 16020 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-mulg 18994 df-cntz 19231 df-cmn 19700 df-psmet 21228 df-xmet 21229 df-met 21230 df-bl 21231 df-mopn 21232 df-fbas 21233 df-fg 21234 df-cnfld 21237 df-top 22747 df-topon 22764 df-topsp 22786 df-bases 22800 df-cld 22874 df-ntr 22875 df-cls 22876 df-nei 22953 df-lp 22991 df-perf 22992 df-cn 23082 df-cnp 23083 df-haus 23170 df-cmp 23242 df-tx 23417 df-hmeo 23610 df-fil 23701 df-fm 23793 df-flim 23794 df-flf 23795 df-xms 24177 df-ms 24178 df-tms 24179 df-cncf 24749 df-limc 25746 df-dv 25747 df-log 26441 |
This theorem is referenced by: relogcn 26523 advlog 26539 advlogexp 26540 logccv 26548 dvcxp1 26625 loglesqrt 26644 logdivsum 27417 log2sumbnd 27428 logdivsqrle 34191 dvrelog2 41443 dvrelog3 41444 |
Copyright terms: Public domain | W3C validator |