![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvrelog | Structured version Visualization version GIF version |
Description: The derivative of the real logarithm function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
dvrelog | β’ (β D (log βΎ β+)) = (π₯ β β+ β¦ (1 / π₯)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrelog 26073 | . . 3 β’ (log βΎ β+) = β‘(exp βΎ β) | |
2 | 1 | oveq2i 7419 | . 2 β’ (β D (log βΎ β+)) = (β D β‘(exp βΎ β)) |
3 | reeff1o 25958 | . . . . . . . . 9 β’ (exp βΎ β):ββ1-1-ontoββ+ | |
4 | f1of 6833 | . . . . . . . . 9 β’ ((exp βΎ β):ββ1-1-ontoββ+ β (exp βΎ β):ββΆβ+) | |
5 | 3, 4 | ax-mp 5 | . . . . . . . 8 β’ (exp βΎ β):ββΆβ+ |
6 | rpssre 12980 | . . . . . . . 8 β’ β+ β β | |
7 | fss 6734 | . . . . . . . 8 β’ (((exp βΎ β):ββΆβ+ β§ β+ β β) β (exp βΎ β):ββΆβ) | |
8 | 5, 6, 7 | mp2an 690 | . . . . . . 7 β’ (exp βΎ β):ββΆβ |
9 | ax-resscn 11166 | . . . . . . . 8 β’ β β β | |
10 | efcn 25954 | . . . . . . . . 9 β’ exp β (ββcnββ) | |
11 | rescncf 24412 | . . . . . . . . 9 β’ (β β β β (exp β (ββcnββ) β (exp βΎ β) β (ββcnββ))) | |
12 | 9, 10, 11 | mp2 9 | . . . . . . . 8 β’ (exp βΎ β) β (ββcnββ) |
13 | cncfcdm 24413 | . . . . . . . 8 β’ ((β β β β§ (exp βΎ β) β (ββcnββ)) β ((exp βΎ β) β (ββcnββ) β (exp βΎ β):ββΆβ)) | |
14 | 9, 12, 13 | mp2an 690 | . . . . . . 7 β’ ((exp βΎ β) β (ββcnββ) β (exp βΎ β):ββΆβ) |
15 | 8, 14 | mpbir 230 | . . . . . 6 β’ (exp βΎ β) β (ββcnββ) |
16 | 15 | a1i 11 | . . . . 5 β’ (β€ β (exp βΎ β) β (ββcnββ)) |
17 | reelprrecn 11201 | . . . . . . . . . 10 β’ β β {β, β} | |
18 | eff 16024 | . . . . . . . . . 10 β’ exp:ββΆβ | |
19 | ssid 4004 | . . . . . . . . . 10 β’ β β β | |
20 | dvef 25496 | . . . . . . . . . . . . 13 β’ (β D exp) = exp | |
21 | 20 | dmeqi 5904 | . . . . . . . . . . . 12 β’ dom (β D exp) = dom exp |
22 | 18 | fdmi 6729 | . . . . . . . . . . . 12 β’ dom exp = β |
23 | 21, 22 | eqtri 2760 | . . . . . . . . . . 11 β’ dom (β D exp) = β |
24 | 9, 23 | sseqtrri 4019 | . . . . . . . . . 10 β’ β β dom (β D exp) |
25 | dvres3 25429 | . . . . . . . . . 10 β’ (((β β {β, β} β§ exp:ββΆβ) β§ (β β β β§ β β dom (β D exp))) β (β D (exp βΎ β)) = ((β D exp) βΎ β)) | |
26 | 17, 18, 19, 24, 25 | mp4an 691 | . . . . . . . . 9 β’ (β D (exp βΎ β)) = ((β D exp) βΎ β) |
27 | 20 | reseq1i 5977 | . . . . . . . . 9 β’ ((β D exp) βΎ β) = (exp βΎ β) |
28 | 26, 27 | eqtri 2760 | . . . . . . . 8 β’ (β D (exp βΎ β)) = (exp βΎ β) |
29 | 28 | dmeqi 5904 | . . . . . . 7 β’ dom (β D (exp βΎ β)) = dom (exp βΎ β) |
30 | 5 | fdmi 6729 | . . . . . . 7 β’ dom (exp βΎ β) = β |
31 | 29, 30 | eqtri 2760 | . . . . . 6 β’ dom (β D (exp βΎ β)) = β |
32 | 31 | a1i 11 | . . . . 5 β’ (β€ β dom (β D (exp βΎ β)) = β) |
33 | 0nrp 13008 | . . . . . . 7 β’ Β¬ 0 β β+ | |
34 | 28 | rneqi 5936 | . . . . . . . . 9 β’ ran (β D (exp βΎ β)) = ran (exp βΎ β) |
35 | f1ofo 6840 | . . . . . . . . . 10 β’ ((exp βΎ β):ββ1-1-ontoββ+ β (exp βΎ β):ββontoββ+) | |
36 | forn 6808 | . . . . . . . . . 10 β’ ((exp βΎ β):ββontoββ+ β ran (exp βΎ β) = β+) | |
37 | 3, 35, 36 | mp2b 10 | . . . . . . . . 9 β’ ran (exp βΎ β) = β+ |
38 | 34, 37 | eqtri 2760 | . . . . . . . 8 β’ ran (β D (exp βΎ β)) = β+ |
39 | 38 | eleq2i 2825 | . . . . . . 7 β’ (0 β ran (β D (exp βΎ β)) β 0 β β+) |
40 | 33, 39 | mtbir 322 | . . . . . 6 β’ Β¬ 0 β ran (β D (exp βΎ β)) |
41 | 40 | a1i 11 | . . . . 5 β’ (β€ β Β¬ 0 β ran (β D (exp βΎ β))) |
42 | 3 | a1i 11 | . . . . 5 β’ (β€ β (exp βΎ β):ββ1-1-ontoββ+) |
43 | 16, 32, 41, 42 | dvcnvre 25535 | . . . 4 β’ (β€ β (β D β‘(exp βΎ β)) = (π₯ β β+ β¦ (1 / ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯))))) |
44 | 43 | mptru 1548 | . . 3 β’ (β D β‘(exp βΎ β)) = (π₯ β β+ β¦ (1 / ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯)))) |
45 | 28 | fveq1i 6892 | . . . . . 6 β’ ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯)) = ((exp βΎ β)β(β‘(exp βΎ β)βπ₯)) |
46 | f1ocnvfv2 7274 | . . . . . . 7 β’ (((exp βΎ β):ββ1-1-ontoββ+ β§ π₯ β β+) β ((exp βΎ β)β(β‘(exp βΎ β)βπ₯)) = π₯) | |
47 | 3, 46 | mpan 688 | . . . . . 6 β’ (π₯ β β+ β ((exp βΎ β)β(β‘(exp βΎ β)βπ₯)) = π₯) |
48 | 45, 47 | eqtrid 2784 | . . . . 5 β’ (π₯ β β+ β ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯)) = π₯) |
49 | 48 | oveq2d 7424 | . . . 4 β’ (π₯ β β+ β (1 / ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯))) = (1 / π₯)) |
50 | 49 | mpteq2ia 5251 | . . 3 β’ (π₯ β β+ β¦ (1 / ((β D (exp βΎ β))β(β‘(exp βΎ β)βπ₯)))) = (π₯ β β+ β¦ (1 / π₯)) |
51 | 44, 50 | eqtri 2760 | . 2 β’ (β D β‘(exp βΎ β)) = (π₯ β β+ β¦ (1 / π₯)) |
52 | 2, 51 | eqtri 2760 | 1 β’ (β D (log βΎ β+)) = (π₯ β β+ β¦ (1 / π₯)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wb 205 = wceq 1541 β€wtru 1542 β wcel 2106 β wss 3948 {cpr 4630 β¦ cmpt 5231 β‘ccnv 5675 dom cdm 5676 ran crn 5677 βΎ cres 5678 βΆwf 6539 βontoβwfo 6541 β1-1-ontoβwf1o 6542 βcfv 6543 (class class class)co 7408 βcc 11107 βcr 11108 0cc0 11109 1c1 11110 / cdiv 11870 β+crp 12973 expce 16004 βcnβccncf 24391 D cdv 25379 logclog 26062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-ioo 13327 df-ioc 13328 df-ico 13329 df-icc 13330 df-fz 13484 df-fzo 13627 df-fl 13756 df-mod 13834 df-seq 13966 df-exp 14027 df-fac 14233 df-bc 14262 df-hash 14290 df-shft 15013 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-limsup 15414 df-clim 15431 df-rlim 15432 df-sum 15632 df-ef 16010 df-sin 16012 df-cos 16013 df-pi 16015 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17367 df-topn 17368 df-0g 17386 df-gsum 17387 df-topgen 17388 df-pt 17389 df-prds 17392 df-xrs 17447 df-qtop 17452 df-imas 17453 df-xps 17455 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-mulg 18950 df-cntz 19180 df-cmn 19649 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-fbas 20940 df-fg 20941 df-cnfld 20944 df-top 22395 df-topon 22412 df-topsp 22434 df-bases 22448 df-cld 22522 df-ntr 22523 df-cls 22524 df-nei 22601 df-lp 22639 df-perf 22640 df-cn 22730 df-cnp 22731 df-haus 22818 df-cmp 22890 df-tx 23065 df-hmeo 23258 df-fil 23349 df-fm 23441 df-flim 23442 df-flf 23443 df-xms 23825 df-ms 23826 df-tms 23827 df-cncf 24393 df-limc 25382 df-dv 25383 df-log 26064 |
This theorem is referenced by: relogcn 26145 advlog 26161 advlogexp 26162 logccv 26170 dvcxp1 26245 loglesqrt 26263 logdivsum 27033 log2sumbnd 27044 logdivsqrle 33657 dvrelog2 40924 dvrelog3 40925 |
Copyright terms: Public domain | W3C validator |