Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrelog Structured version   Visualization version   GIF version

Theorem dvrelog 25234
 Description: The derivative of the real logarithm function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Assertion
Ref Expression
dvrelog (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))

Proof of Theorem dvrelog
StepHypRef Expression
1 dfrelog 25163 . . 3 (log ↾ ℝ+) = (exp ↾ ℝ)
21oveq2i 7160 . 2 (ℝ D (log ↾ ℝ+)) = (ℝ D (exp ↾ ℝ))
3 reeff1o 25048 . . . . . . . . 9 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
4 f1of 6606 . . . . . . . . 9 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
53, 4ax-mp 5 . . . . . . . 8 (exp ↾ ℝ):ℝ⟶ℝ+
6 rpssre 12393 . . . . . . . 8 + ⊆ ℝ
7 fss 6517 . . . . . . . 8 (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ)
85, 6, 7mp2an 691 . . . . . . 7 (exp ↾ ℝ):ℝ⟶ℝ
9 ax-resscn 10592 . . . . . . . 8 ℝ ⊆ ℂ
10 efcn 25044 . . . . . . . . 9 exp ∈ (ℂ–cn→ℂ)
11 rescncf 23508 . . . . . . . . 9 (ℝ ⊆ ℂ → (exp ∈ (ℂ–cn→ℂ) → (exp ↾ ℝ) ∈ (ℝ–cn→ℂ)))
129, 10, 11mp2 9 . . . . . . . 8 (exp ↾ ℝ) ∈ (ℝ–cn→ℂ)
13 cncffvrn 23509 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ (exp ↾ ℝ) ∈ (ℝ–cn→ℂ)) → ((exp ↾ ℝ) ∈ (ℝ–cn→ℝ) ↔ (exp ↾ ℝ):ℝ⟶ℝ))
149, 12, 13mp2an 691 . . . . . . 7 ((exp ↾ ℝ) ∈ (ℝ–cn→ℝ) ↔ (exp ↾ ℝ):ℝ⟶ℝ)
158, 14mpbir 234 . . . . . 6 (exp ↾ ℝ) ∈ (ℝ–cn→ℝ)
1615a1i 11 . . . . 5 (⊤ → (exp ↾ ℝ) ∈ (ℝ–cn→ℝ))
17 reelprrecn 10627 . . . . . . . . . 10 ℝ ∈ {ℝ, ℂ}
18 eff 15435 . . . . . . . . . 10 exp:ℂ⟶ℂ
19 ssid 3975 . . . . . . . . . 10 ℂ ⊆ ℂ
20 dvef 24589 . . . . . . . . . . . . 13 (ℂ D exp) = exp
2120dmeqi 5760 . . . . . . . . . . . 12 dom (ℂ D exp) = dom exp
2218fdmi 6514 . . . . . . . . . . . 12 dom exp = ℂ
2321, 22eqtri 2847 . . . . . . . . . . 11 dom (ℂ D exp) = ℂ
249, 23sseqtrri 3990 . . . . . . . . . 10 ℝ ⊆ dom (ℂ D exp)
25 dvres3 24522 . . . . . . . . . 10 (((ℝ ∈ {ℝ, ℂ} ∧ exp:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D exp))) → (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ))
2617, 18, 19, 24, 25mp4an 692 . . . . . . . . 9 (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ)
2720reseq1i 5836 . . . . . . . . 9 ((ℂ D exp) ↾ ℝ) = (exp ↾ ℝ)
2826, 27eqtri 2847 . . . . . . . 8 (ℝ D (exp ↾ ℝ)) = (exp ↾ ℝ)
2928dmeqi 5760 . . . . . . 7 dom (ℝ D (exp ↾ ℝ)) = dom (exp ↾ ℝ)
305fdmi 6514 . . . . . . 7 dom (exp ↾ ℝ) = ℝ
3129, 30eqtri 2847 . . . . . 6 dom (ℝ D (exp ↾ ℝ)) = ℝ
3231a1i 11 . . . . 5 (⊤ → dom (ℝ D (exp ↾ ℝ)) = ℝ)
33 0nrp 12421 . . . . . . 7 ¬ 0 ∈ ℝ+
3428rneqi 5794 . . . . . . . . 9 ran (ℝ D (exp ↾ ℝ)) = ran (exp ↾ ℝ)
35 f1ofo 6613 . . . . . . . . . 10 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ–onto→ℝ+)
36 forn 6584 . . . . . . . . . 10 ((exp ↾ ℝ):ℝ–onto→ℝ+ → ran (exp ↾ ℝ) = ℝ+)
373, 35, 36mp2b 10 . . . . . . . . 9 ran (exp ↾ ℝ) = ℝ+
3834, 37eqtri 2847 . . . . . . . 8 ran (ℝ D (exp ↾ ℝ)) = ℝ+
3938eleq2i 2907 . . . . . . 7 (0 ∈ ran (ℝ D (exp ↾ ℝ)) ↔ 0 ∈ ℝ+)
4033, 39mtbir 326 . . . . . 6 ¬ 0 ∈ ran (ℝ D (exp ↾ ℝ))
4140a1i 11 . . . . 5 (⊤ → ¬ 0 ∈ ran (ℝ D (exp ↾ ℝ)))
423a1i 11 . . . . 5 (⊤ → (exp ↾ ℝ):ℝ–1-1-onto→ℝ+)
4316, 32, 41, 42dvcnvre 24628 . . . 4 (⊤ → (ℝ D (exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥)))))
4443mptru 1545 . . 3 (ℝ D (exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥))))
4528fveq1i 6662 . . . . . 6 ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥)) = ((exp ↾ ℝ)‘((exp ↾ ℝ)‘𝑥))
46 f1ocnvfv2 7026 . . . . . . 7 (((exp ↾ ℝ):ℝ–1-1-onto→ℝ+𝑥 ∈ ℝ+) → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘𝑥)) = 𝑥)
473, 46mpan 689 . . . . . 6 (𝑥 ∈ ℝ+ → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘𝑥)) = 𝑥)
4845, 47syl5eq 2871 . . . . 5 (𝑥 ∈ ℝ+ → ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥)) = 𝑥)
4948oveq2d 7165 . . . 4 (𝑥 ∈ ℝ+ → (1 / ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥))) = (1 / 𝑥))
5049mpteq2ia 5143 . . 3 (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
5144, 50eqtri 2847 . 2 (ℝ D (exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
522, 51eqtri 2847 1 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209   = wceq 1538  ⊤wtru 1539   ∈ wcel 2115   ⊆ wss 3919  {cpr 4552   ↦ cmpt 5132  ◡ccnv 5541  dom cdm 5542  ran crn 5543   ↾ cres 5544  ⟶wf 6339  –onto→wfo 6341  –1-1-onto→wf1o 6342  ‘cfv 6343  (class class class)co 7149  ℂcc 10533  ℝcr 10534  0cc0 10535  1c1 10536   / cdiv 11295  ℝ+crp 12386  expce 15415  –cn→ccncf 23487   D cdv 24472  logclog 25152 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-addf 10614  ax-mulf 10615 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-map 8404  df-pm 8405  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-fi 8872  df-sup 8903  df-inf 8904  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-xmul 12506  df-ioo 12739  df-ioc 12740  df-ico 12741  df-icc 12742  df-fz 12895  df-fzo 13038  df-fl 13166  df-mod 13242  df-seq 13374  df-exp 13435  df-fac 13639  df-bc 13668  df-hash 13696  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20090  df-xmet 20091  df-met 20092  df-bl 20093  df-mopn 20094  df-fbas 20095  df-fg 20096  df-cnfld 20099  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-cmp 21998  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24475  df-dv 24476  df-log 25154 This theorem is referenced by:  relogcn  25235  advlog  25251  advlogexp  25252  logccv  25260  dvcxp1  25335  loglesqrt  25353  logdivsum  26123  log2sumbnd  26134  logdivsqrle  31981
 Copyright terms: Public domain W3C validator