![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvrelog | Structured version Visualization version GIF version |
Description: The derivative of the real logarithm function. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
dvrelog | ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrelog 26625 | . . 3 ⊢ (log ↾ ℝ+) = ◡(exp ↾ ℝ) | |
2 | 1 | oveq2i 7459 | . 2 ⊢ (ℝ D (log ↾ ℝ+)) = (ℝ D ◡(exp ↾ ℝ)) |
3 | reeff1o 26509 | . . . . . . . . 9 ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ | |
4 | f1of 6862 | . . . . . . . . 9 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
5 | 3, 4 | ax-mp 5 | . . . . . . . 8 ⊢ (exp ↾ ℝ):ℝ⟶ℝ+ |
6 | rpssre 13064 | . . . . . . . 8 ⊢ ℝ+ ⊆ ℝ | |
7 | fss 6763 | . . . . . . . 8 ⊢ (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ) | |
8 | 5, 6, 7 | mp2an 691 | . . . . . . 7 ⊢ (exp ↾ ℝ):ℝ⟶ℝ |
9 | ax-resscn 11241 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
10 | efcn 26505 | . . . . . . . . 9 ⊢ exp ∈ (ℂ–cn→ℂ) | |
11 | rescncf 24942 | . . . . . . . . 9 ⊢ (ℝ ⊆ ℂ → (exp ∈ (ℂ–cn→ℂ) → (exp ↾ ℝ) ∈ (ℝ–cn→ℂ))) | |
12 | 9, 10, 11 | mp2 9 | . . . . . . . 8 ⊢ (exp ↾ ℝ) ∈ (ℝ–cn→ℂ) |
13 | cncfcdm 24943 | . . . . . . . 8 ⊢ ((ℝ ⊆ ℂ ∧ (exp ↾ ℝ) ∈ (ℝ–cn→ℂ)) → ((exp ↾ ℝ) ∈ (ℝ–cn→ℝ) ↔ (exp ↾ ℝ):ℝ⟶ℝ)) | |
14 | 9, 12, 13 | mp2an 691 | . . . . . . 7 ⊢ ((exp ↾ ℝ) ∈ (ℝ–cn→ℝ) ↔ (exp ↾ ℝ):ℝ⟶ℝ) |
15 | 8, 14 | mpbir 231 | . . . . . 6 ⊢ (exp ↾ ℝ) ∈ (ℝ–cn→ℝ) |
16 | 15 | a1i 11 | . . . . 5 ⊢ (⊤ → (exp ↾ ℝ) ∈ (ℝ–cn→ℝ)) |
17 | reelprrecn 11276 | . . . . . . . . . 10 ⊢ ℝ ∈ {ℝ, ℂ} | |
18 | eff 16129 | . . . . . . . . . 10 ⊢ exp:ℂ⟶ℂ | |
19 | ssid 4031 | . . . . . . . . . 10 ⊢ ℂ ⊆ ℂ | |
20 | dvef 26038 | . . . . . . . . . . . . 13 ⊢ (ℂ D exp) = exp | |
21 | 20 | dmeqi 5929 | . . . . . . . . . . . 12 ⊢ dom (ℂ D exp) = dom exp |
22 | 18 | fdmi 6758 | . . . . . . . . . . . 12 ⊢ dom exp = ℂ |
23 | 21, 22 | eqtri 2768 | . . . . . . . . . . 11 ⊢ dom (ℂ D exp) = ℂ |
24 | 9, 23 | sseqtrri 4046 | . . . . . . . . . 10 ⊢ ℝ ⊆ dom (ℂ D exp) |
25 | dvres3 25968 | . . . . . . . . . 10 ⊢ (((ℝ ∈ {ℝ, ℂ} ∧ exp:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D exp))) → (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ)) | |
26 | 17, 18, 19, 24, 25 | mp4an 692 | . . . . . . . . 9 ⊢ (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ) |
27 | 20 | reseq1i 6005 | . . . . . . . . 9 ⊢ ((ℂ D exp) ↾ ℝ) = (exp ↾ ℝ) |
28 | 26, 27 | eqtri 2768 | . . . . . . . 8 ⊢ (ℝ D (exp ↾ ℝ)) = (exp ↾ ℝ) |
29 | 28 | dmeqi 5929 | . . . . . . 7 ⊢ dom (ℝ D (exp ↾ ℝ)) = dom (exp ↾ ℝ) |
30 | 5 | fdmi 6758 | . . . . . . 7 ⊢ dom (exp ↾ ℝ) = ℝ |
31 | 29, 30 | eqtri 2768 | . . . . . 6 ⊢ dom (ℝ D (exp ↾ ℝ)) = ℝ |
32 | 31 | a1i 11 | . . . . 5 ⊢ (⊤ → dom (ℝ D (exp ↾ ℝ)) = ℝ) |
33 | 0nrp 13092 | . . . . . . 7 ⊢ ¬ 0 ∈ ℝ+ | |
34 | 28 | rneqi 5962 | . . . . . . . . 9 ⊢ ran (ℝ D (exp ↾ ℝ)) = ran (exp ↾ ℝ) |
35 | f1ofo 6869 | . . . . . . . . . 10 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ–onto→ℝ+) | |
36 | forn 6837 | . . . . . . . . . 10 ⊢ ((exp ↾ ℝ):ℝ–onto→ℝ+ → ran (exp ↾ ℝ) = ℝ+) | |
37 | 3, 35, 36 | mp2b 10 | . . . . . . . . 9 ⊢ ran (exp ↾ ℝ) = ℝ+ |
38 | 34, 37 | eqtri 2768 | . . . . . . . 8 ⊢ ran (ℝ D (exp ↾ ℝ)) = ℝ+ |
39 | 38 | eleq2i 2836 | . . . . . . 7 ⊢ (0 ∈ ran (ℝ D (exp ↾ ℝ)) ↔ 0 ∈ ℝ+) |
40 | 33, 39 | mtbir 323 | . . . . . 6 ⊢ ¬ 0 ∈ ran (ℝ D (exp ↾ ℝ)) |
41 | 40 | a1i 11 | . . . . 5 ⊢ (⊤ → ¬ 0 ∈ ran (ℝ D (exp ↾ ℝ))) |
42 | 3 | a1i 11 | . . . . 5 ⊢ (⊤ → (exp ↾ ℝ):ℝ–1-1-onto→ℝ+) |
43 | 16, 32, 41, 42 | dvcnvre 26078 | . . . 4 ⊢ (⊤ → (ℝ D ◡(exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥))))) |
44 | 43 | mptru 1544 | . . 3 ⊢ (ℝ D ◡(exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥)))) |
45 | 28 | fveq1i 6921 | . . . . . 6 ⊢ ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥)) = ((exp ↾ ℝ)‘(◡(exp ↾ ℝ)‘𝑥)) |
46 | f1ocnvfv2 7313 | . . . . . . 7 ⊢ (((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ∧ 𝑥 ∈ ℝ+) → ((exp ↾ ℝ)‘(◡(exp ↾ ℝ)‘𝑥)) = 𝑥) | |
47 | 3, 46 | mpan 689 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → ((exp ↾ ℝ)‘(◡(exp ↾ ℝ)‘𝑥)) = 𝑥) |
48 | 45, 47 | eqtrid 2792 | . . . . 5 ⊢ (𝑥 ∈ ℝ+ → ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥)) = 𝑥) |
49 | 48 | oveq2d 7464 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → (1 / ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥))) = (1 / 𝑥)) |
50 | 49 | mpteq2ia 5269 | . . 3 ⊢ (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘(◡(exp ↾ ℝ)‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) |
51 | 44, 50 | eqtri 2768 | . 2 ⊢ (ℝ D ◡(exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) |
52 | 2, 51 | eqtri 2768 | 1 ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ⊆ wss 3976 {cpr 4650 ↦ cmpt 5249 ◡ccnv 5699 dom cdm 5700 ran crn 5701 ↾ cres 5702 ⟶wf 6569 –onto→wfo 6571 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 / cdiv 11947 ℝ+crp 13057 expce 16109 –cn→ccncf 24921 D cdv 25918 logclog 26614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 df-pi 16120 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-limc 25921 df-dv 25922 df-log 26616 |
This theorem is referenced by: relogcn 26698 advlog 26714 advlogexp 26715 logccv 26723 dvcxp1 26800 loglesqrt 26822 logdivsum 27595 log2sumbnd 27606 logdivsqrle 34627 dvrelog2 42021 dvrelog3 42022 |
Copyright terms: Public domain | W3C validator |