MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrelog Structured version   Visualization version   GIF version

Theorem dvrelog 26598
Description: The derivative of the real logarithm function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Assertion
Ref Expression
dvrelog (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))

Proof of Theorem dvrelog
StepHypRef Expression
1 dfrelog 26526 . . 3 (log ↾ ℝ+) = (exp ↾ ℝ)
21oveq2i 7416 . 2 (ℝ D (log ↾ ℝ+)) = (ℝ D (exp ↾ ℝ))
3 reeff1o 26409 . . . . . . . . 9 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
4 f1of 6818 . . . . . . . . 9 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
53, 4ax-mp 5 . . . . . . . 8 (exp ↾ ℝ):ℝ⟶ℝ+
6 rpssre 13016 . . . . . . . 8 + ⊆ ℝ
7 fss 6722 . . . . . . . 8 (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ)
85, 6, 7mp2an 692 . . . . . . 7 (exp ↾ ℝ):ℝ⟶ℝ
9 ax-resscn 11186 . . . . . . . 8 ℝ ⊆ ℂ
10 efcn 26405 . . . . . . . . 9 exp ∈ (ℂ–cn→ℂ)
11 rescncf 24841 . . . . . . . . 9 (ℝ ⊆ ℂ → (exp ∈ (ℂ–cn→ℂ) → (exp ↾ ℝ) ∈ (ℝ–cn→ℂ)))
129, 10, 11mp2 9 . . . . . . . 8 (exp ↾ ℝ) ∈ (ℝ–cn→ℂ)
13 cncfcdm 24842 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ (exp ↾ ℝ) ∈ (ℝ–cn→ℂ)) → ((exp ↾ ℝ) ∈ (ℝ–cn→ℝ) ↔ (exp ↾ ℝ):ℝ⟶ℝ))
149, 12, 13mp2an 692 . . . . . . 7 ((exp ↾ ℝ) ∈ (ℝ–cn→ℝ) ↔ (exp ↾ ℝ):ℝ⟶ℝ)
158, 14mpbir 231 . . . . . 6 (exp ↾ ℝ) ∈ (ℝ–cn→ℝ)
1615a1i 11 . . . . 5 (⊤ → (exp ↾ ℝ) ∈ (ℝ–cn→ℝ))
17 reelprrecn 11221 . . . . . . . . . 10 ℝ ∈ {ℝ, ℂ}
18 eff 16097 . . . . . . . . . 10 exp:ℂ⟶ℂ
19 ssid 3981 . . . . . . . . . 10 ℂ ⊆ ℂ
20 dvef 25936 . . . . . . . . . . . . 13 (ℂ D exp) = exp
2120dmeqi 5884 . . . . . . . . . . . 12 dom (ℂ D exp) = dom exp
2218fdmi 6717 . . . . . . . . . . . 12 dom exp = ℂ
2321, 22eqtri 2758 . . . . . . . . . . 11 dom (ℂ D exp) = ℂ
249, 23sseqtrri 4008 . . . . . . . . . 10 ℝ ⊆ dom (ℂ D exp)
25 dvres3 25866 . . . . . . . . . 10 (((ℝ ∈ {ℝ, ℂ} ∧ exp:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D exp))) → (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ))
2617, 18, 19, 24, 25mp4an 693 . . . . . . . . 9 (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ)
2720reseq1i 5962 . . . . . . . . 9 ((ℂ D exp) ↾ ℝ) = (exp ↾ ℝ)
2826, 27eqtri 2758 . . . . . . . 8 (ℝ D (exp ↾ ℝ)) = (exp ↾ ℝ)
2928dmeqi 5884 . . . . . . 7 dom (ℝ D (exp ↾ ℝ)) = dom (exp ↾ ℝ)
305fdmi 6717 . . . . . . 7 dom (exp ↾ ℝ) = ℝ
3129, 30eqtri 2758 . . . . . 6 dom (ℝ D (exp ↾ ℝ)) = ℝ
3231a1i 11 . . . . 5 (⊤ → dom (ℝ D (exp ↾ ℝ)) = ℝ)
33 0nrp 13044 . . . . . . 7 ¬ 0 ∈ ℝ+
3428rneqi 5917 . . . . . . . . 9 ran (ℝ D (exp ↾ ℝ)) = ran (exp ↾ ℝ)
35 f1ofo 6825 . . . . . . . . . 10 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ–onto→ℝ+)
36 forn 6793 . . . . . . . . . 10 ((exp ↾ ℝ):ℝ–onto→ℝ+ → ran (exp ↾ ℝ) = ℝ+)
373, 35, 36mp2b 10 . . . . . . . . 9 ran (exp ↾ ℝ) = ℝ+
3834, 37eqtri 2758 . . . . . . . 8 ran (ℝ D (exp ↾ ℝ)) = ℝ+
3938eleq2i 2826 . . . . . . 7 (0 ∈ ran (ℝ D (exp ↾ ℝ)) ↔ 0 ∈ ℝ+)
4033, 39mtbir 323 . . . . . 6 ¬ 0 ∈ ran (ℝ D (exp ↾ ℝ))
4140a1i 11 . . . . 5 (⊤ → ¬ 0 ∈ ran (ℝ D (exp ↾ ℝ)))
423a1i 11 . . . . 5 (⊤ → (exp ↾ ℝ):ℝ–1-1-onto→ℝ+)
4316, 32, 41, 42dvcnvre 25976 . . . 4 (⊤ → (ℝ D (exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥)))))
4443mptru 1547 . . 3 (ℝ D (exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥))))
4528fveq1i 6877 . . . . . 6 ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥)) = ((exp ↾ ℝ)‘((exp ↾ ℝ)‘𝑥))
46 f1ocnvfv2 7270 . . . . . . 7 (((exp ↾ ℝ):ℝ–1-1-onto→ℝ+𝑥 ∈ ℝ+) → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘𝑥)) = 𝑥)
473, 46mpan 690 . . . . . 6 (𝑥 ∈ ℝ+ → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘𝑥)) = 𝑥)
4845, 47eqtrid 2782 . . . . 5 (𝑥 ∈ ℝ+ → ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥)) = 𝑥)
4948oveq2d 7421 . . . 4 (𝑥 ∈ ℝ+ → (1 / ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥))) = (1 / 𝑥))
5049mpteq2ia 5216 . . 3 (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
5144, 50eqtri 2758 . 2 (ℝ D (exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
522, 51eqtri 2758 1 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wtru 1541  wcel 2108  wss 3926  {cpr 4603  cmpt 5201  ccnv 5653  dom cdm 5654  ran crn 5655  cres 5656  wf 6527  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   / cdiv 11894  +crp 13008  expce 16077  cnccncf 24820   D cdv 25816  logclog 26515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517
This theorem is referenced by:  relogcn  26599  advlog  26615  advlogexp  26616  logccv  26624  dvcxp1  26701  loglesqrt  26723  logdivsum  27496  log2sumbnd  27507  logdivsqrle  34682  dvrelog2  42077  dvrelog3  42078
  Copyright terms: Public domain W3C validator