Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrj0 Structured version   Visualization version   GIF version

Theorem atcvrj0 37891
Description: Two atoms covering the zero subspace are equal. (atcv1 31322 analog.) (Contributed by NM, 29-Nov-2011.)
Hypotheses
Ref Expression
atcvrj0.b 𝐵 = (Base‘𝐾)
atcvrj0.j = (join‘𝐾)
atcvrj0.z 0 = (0.‘𝐾)
atcvrj0.c 𝐶 = ( ⋖ ‘𝐾)
atcvrj0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvrj0 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = 0𝑃 = 𝑄))

Proof of Theorem atcvrj0
StepHypRef Expression
1 breq1 5108 . . . . . . . 8 (𝑋 = 0 → (𝑋𝐶(𝑃 𝑄) ↔ 0 𝐶(𝑃 𝑄)))
21biimpd 228 . . . . . . 7 (𝑋 = 0 → (𝑋𝐶(𝑃 𝑄) → 0 𝐶(𝑃 𝑄)))
32adantl 482 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋 = 0 ) → (𝑋𝐶(𝑃 𝑄) → 0 𝐶(𝑃 𝑄)))
4 atcvrj0.j . . . . . . . . 9 = (join‘𝐾)
5 atcvrj0.z . . . . . . . . 9 0 = (0.‘𝐾)
6 atcvrj0.c . . . . . . . . 9 𝐶 = ( ⋖ ‘𝐾)
7 atcvrj0.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
84, 5, 6, 7atcvr0eq 37889 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))
983adant3r1 1182 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))
109adantr 481 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋 = 0 ) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))
113, 10sylibd 238 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋 = 0 ) → (𝑋𝐶(𝑃 𝑄) → 𝑃 = 𝑄))
1211ex 413 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 = 0 → (𝑋𝐶(𝑃 𝑄) → 𝑃 = 𝑄)))
1312com23 86 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑃 𝑄) → (𝑋 = 0𝑃 = 𝑄)))
14133impia 1117 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = 0𝑃 = 𝑄))
15 oveq1 7364 . . . . . . 7 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
1615breq2d 5117 . . . . . 6 (𝑃 = 𝑄 → (𝑋𝐶(𝑃 𝑄) ↔ 𝑋𝐶(𝑄 𝑄)))
1716biimpac 479 . . . . 5 ((𝑋𝐶(𝑃 𝑄) ∧ 𝑃 = 𝑄) → 𝑋𝐶(𝑄 𝑄))
18 simpr3 1196 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
194, 7hlatjidm 37831 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
2018, 19syldan 591 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄 𝑄) = 𝑄)
2120breq2d 5117 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑄 𝑄) ↔ 𝑋𝐶𝑄))
22 hlatl 37822 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2322adantr 481 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ AtLat)
24 simpr1 1194 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
25 atcvrj0.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
26 eqid 2736 . . . . . . . . 9 (le‘𝐾) = (le‘𝐾)
2725, 26, 5, 6, 7atcvreq0 37776 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑄𝐴) → (𝑋𝐶𝑄𝑋 = 0 ))
2823, 24, 18, 27syl3anc 1371 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶𝑄𝑋 = 0 ))
2928biimpd 228 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶𝑄𝑋 = 0 ))
3021, 29sylbid 239 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑄 𝑄) → 𝑋 = 0 ))
3117, 30syl5 34 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋𝐶(𝑃 𝑄) ∧ 𝑃 = 𝑄) → 𝑋 = 0 ))
3231expd 416 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑃 𝑄) → (𝑃 = 𝑄𝑋 = 0 )))
33323impia 1117 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑃 = 𝑄𝑋 = 0 ))
3414, 33impbid 211 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = 0𝑃 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  joincjn 18200  0.cp0 18312  ccvr 37724  Atomscatm 37725  AtLatcal 37726  HLchlt 37812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813
This theorem is referenced by:  cvrat2  37892  atcvrneN  37893  atcvrj2b  37895
  Copyright terms: Public domain W3C validator