Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrj0 Structured version   Visualization version   GIF version

Theorem atcvrj0 39410
Description: Two atoms covering the zero subspace are equal. (atcv1 32342 analog.) (Contributed by NM, 29-Nov-2011.)
Hypotheses
Ref Expression
atcvrj0.b 𝐵 = (Base‘𝐾)
atcvrj0.j = (join‘𝐾)
atcvrj0.z 0 = (0.‘𝐾)
atcvrj0.c 𝐶 = ( ⋖ ‘𝐾)
atcvrj0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvrj0 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = 0𝑃 = 𝑄))

Proof of Theorem atcvrj0
StepHypRef Expression
1 breq1 5098 . . . . . . . 8 (𝑋 = 0 → (𝑋𝐶(𝑃 𝑄) ↔ 0 𝐶(𝑃 𝑄)))
21biimpd 229 . . . . . . 7 (𝑋 = 0 → (𝑋𝐶(𝑃 𝑄) → 0 𝐶(𝑃 𝑄)))
32adantl 481 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋 = 0 ) → (𝑋𝐶(𝑃 𝑄) → 0 𝐶(𝑃 𝑄)))
4 atcvrj0.j . . . . . . . . 9 = (join‘𝐾)
5 atcvrj0.z . . . . . . . . 9 0 = (0.‘𝐾)
6 atcvrj0.c . . . . . . . . 9 𝐶 = ( ⋖ ‘𝐾)
7 atcvrj0.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
84, 5, 6, 7atcvr0eq 39408 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))
983adant3r1 1183 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))
109adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋 = 0 ) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))
113, 10sylibd 239 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋 = 0 ) → (𝑋𝐶(𝑃 𝑄) → 𝑃 = 𝑄))
1211ex 412 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 = 0 → (𝑋𝐶(𝑃 𝑄) → 𝑃 = 𝑄)))
1312com23 86 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑃 𝑄) → (𝑋 = 0𝑃 = 𝑄)))
14133impia 1117 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = 0𝑃 = 𝑄))
15 oveq1 7360 . . . . . . 7 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
1615breq2d 5107 . . . . . 6 (𝑃 = 𝑄 → (𝑋𝐶(𝑃 𝑄) ↔ 𝑋𝐶(𝑄 𝑄)))
1716biimpac 478 . . . . 5 ((𝑋𝐶(𝑃 𝑄) ∧ 𝑃 = 𝑄) → 𝑋𝐶(𝑄 𝑄))
18 simpr3 1197 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
194, 7hlatjidm 39350 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
2018, 19syldan 591 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄 𝑄) = 𝑄)
2120breq2d 5107 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑄 𝑄) ↔ 𝑋𝐶𝑄))
22 hlatl 39341 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2322adantr 480 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ AtLat)
24 simpr1 1195 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
25 atcvrj0.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
26 eqid 2729 . . . . . . . . 9 (le‘𝐾) = (le‘𝐾)
2725, 26, 5, 6, 7atcvreq0 39295 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑄𝐴) → (𝑋𝐶𝑄𝑋 = 0 ))
2823, 24, 18, 27syl3anc 1373 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶𝑄𝑋 = 0 ))
2928biimpd 229 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶𝑄𝑋 = 0 ))
3021, 29sylbid 240 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑄 𝑄) → 𝑋 = 0 ))
3117, 30syl5 34 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋𝐶(𝑃 𝑄) ∧ 𝑃 = 𝑄) → 𝑋 = 0 ))
3231expd 415 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑃 𝑄) → (𝑃 = 𝑄𝑋 = 0 )))
33323impia 1117 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑃 = 𝑄𝑋 = 0 ))
3414, 33impbid 212 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = 0𝑃 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  joincjn 18235  0.cp0 18345  ccvr 39243  Atomscatm 39244  AtLatcal 39245  HLchlt 39331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-lat 18356  df-clat 18423  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332
This theorem is referenced by:  cvrat2  39411  atcvrneN  39412  atcvrj2b  39414
  Copyright terms: Public domain W3C validator