Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrj0 Structured version   Visualization version   GIF version

Theorem atcvrj0 39422
Description: Two atoms covering the zero subspace are equal. (atcv1 32309 analog.) (Contributed by NM, 29-Nov-2011.)
Hypotheses
Ref Expression
atcvrj0.b 𝐵 = (Base‘𝐾)
atcvrj0.j = (join‘𝐾)
atcvrj0.z 0 = (0.‘𝐾)
atcvrj0.c 𝐶 = ( ⋖ ‘𝐾)
atcvrj0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvrj0 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = 0𝑃 = 𝑄))

Proof of Theorem atcvrj0
StepHypRef Expression
1 breq1 5110 . . . . . . . 8 (𝑋 = 0 → (𝑋𝐶(𝑃 𝑄) ↔ 0 𝐶(𝑃 𝑄)))
21biimpd 229 . . . . . . 7 (𝑋 = 0 → (𝑋𝐶(𝑃 𝑄) → 0 𝐶(𝑃 𝑄)))
32adantl 481 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋 = 0 ) → (𝑋𝐶(𝑃 𝑄) → 0 𝐶(𝑃 𝑄)))
4 atcvrj0.j . . . . . . . . 9 = (join‘𝐾)
5 atcvrj0.z . . . . . . . . 9 0 = (0.‘𝐾)
6 atcvrj0.c . . . . . . . . 9 𝐶 = ( ⋖ ‘𝐾)
7 atcvrj0.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
84, 5, 6, 7atcvr0eq 39420 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))
983adant3r1 1183 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))
109adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋 = 0 ) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))
113, 10sylibd 239 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋 = 0 ) → (𝑋𝐶(𝑃 𝑄) → 𝑃 = 𝑄))
1211ex 412 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 = 0 → (𝑋𝐶(𝑃 𝑄) → 𝑃 = 𝑄)))
1312com23 86 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑃 𝑄) → (𝑋 = 0𝑃 = 𝑄)))
14133impia 1117 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = 0𝑃 = 𝑄))
15 oveq1 7394 . . . . . . 7 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
1615breq2d 5119 . . . . . 6 (𝑃 = 𝑄 → (𝑋𝐶(𝑃 𝑄) ↔ 𝑋𝐶(𝑄 𝑄)))
1716biimpac 478 . . . . 5 ((𝑋𝐶(𝑃 𝑄) ∧ 𝑃 = 𝑄) → 𝑋𝐶(𝑄 𝑄))
18 simpr3 1197 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
194, 7hlatjidm 39362 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
2018, 19syldan 591 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄 𝑄) = 𝑄)
2120breq2d 5119 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑄 𝑄) ↔ 𝑋𝐶𝑄))
22 hlatl 39353 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2322adantr 480 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ AtLat)
24 simpr1 1195 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
25 atcvrj0.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
26 eqid 2729 . . . . . . . . 9 (le‘𝐾) = (le‘𝐾)
2725, 26, 5, 6, 7atcvreq0 39307 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑄𝐴) → (𝑋𝐶𝑄𝑋 = 0 ))
2823, 24, 18, 27syl3anc 1373 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶𝑄𝑋 = 0 ))
2928biimpd 229 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶𝑄𝑋 = 0 ))
3021, 29sylbid 240 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑄 𝑄) → 𝑋 = 0 ))
3117, 30syl5 34 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋𝐶(𝑃 𝑄) ∧ 𝑃 = 𝑄) → 𝑋 = 0 ))
3231expd 415 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑃 𝑄) → (𝑃 = 𝑄𝑋 = 0 )))
33323impia 1117 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑃 = 𝑄𝑋 = 0 ))
3414, 33impbid 212 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = 0𝑃 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  0.cp0 18382  ccvr 39255  Atomscatm 39256  AtLatcal 39257  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344
This theorem is referenced by:  cvrat2  39423  atcvrneN  39424  atcvrj2b  39426
  Copyright terms: Public domain W3C validator