Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrj0 Structured version   Visualization version   GIF version

Theorem atcvrj0 36015
Description: Two atoms covering the zero subspace are equal. (atcv1 29938 analog.) (Contributed by NM, 29-Nov-2011.)
Hypotheses
Ref Expression
atcvrj0.b 𝐵 = (Base‘𝐾)
atcvrj0.j = (join‘𝐾)
atcvrj0.z 0 = (0.‘𝐾)
atcvrj0.c 𝐶 = ( ⋖ ‘𝐾)
atcvrj0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvrj0 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = 0𝑃 = 𝑄))

Proof of Theorem atcvrj0
StepHypRef Expression
1 breq1 4932 . . . . . . . 8 (𝑋 = 0 → (𝑋𝐶(𝑃 𝑄) ↔ 0 𝐶(𝑃 𝑄)))
21biimpd 221 . . . . . . 7 (𝑋 = 0 → (𝑋𝐶(𝑃 𝑄) → 0 𝐶(𝑃 𝑄)))
32adantl 474 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋 = 0 ) → (𝑋𝐶(𝑃 𝑄) → 0 𝐶(𝑃 𝑄)))
4 atcvrj0.j . . . . . . . . 9 = (join‘𝐾)
5 atcvrj0.z . . . . . . . . 9 0 = (0.‘𝐾)
6 atcvrj0.c . . . . . . . . 9 𝐶 = ( ⋖ ‘𝐾)
7 atcvrj0.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
84, 5, 6, 7atcvr0eq 36013 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))
983adant3r1 1162 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))
109adantr 473 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋 = 0 ) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))
113, 10sylibd 231 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑋 = 0 ) → (𝑋𝐶(𝑃 𝑄) → 𝑃 = 𝑄))
1211ex 405 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 = 0 → (𝑋𝐶(𝑃 𝑄) → 𝑃 = 𝑄)))
1312com23 86 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑃 𝑄) → (𝑋 = 0𝑃 = 𝑄)))
14133impia 1097 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = 0𝑃 = 𝑄))
15 oveq1 6983 . . . . . . 7 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
1615breq2d 4941 . . . . . 6 (𝑃 = 𝑄 → (𝑋𝐶(𝑃 𝑄) ↔ 𝑋𝐶(𝑄 𝑄)))
1716biimpac 471 . . . . 5 ((𝑋𝐶(𝑃 𝑄) ∧ 𝑃 = 𝑄) → 𝑋𝐶(𝑄 𝑄))
18 simpr3 1176 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
194, 7hlatjidm 35956 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
2018, 19syldan 582 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄 𝑄) = 𝑄)
2120breq2d 4941 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑄 𝑄) ↔ 𝑋𝐶𝑄))
22 hlatl 35947 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2322adantr 473 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ AtLat)
24 simpr1 1174 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
25 atcvrj0.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
26 eqid 2778 . . . . . . . . 9 (le‘𝐾) = (le‘𝐾)
2725, 26, 5, 6, 7atcvreq0 35901 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑄𝐴) → (𝑋𝐶𝑄𝑋 = 0 ))
2823, 24, 18, 27syl3anc 1351 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶𝑄𝑋 = 0 ))
2928biimpd 221 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶𝑄𝑋 = 0 ))
3021, 29sylbid 232 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑄 𝑄) → 𝑋 = 0 ))
3117, 30syl5 34 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋𝐶(𝑃 𝑄) ∧ 𝑃 = 𝑄) → 𝑋 = 0 ))
3231expd 408 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋𝐶(𝑃 𝑄) → (𝑃 = 𝑄𝑋 = 0 )))
33323impia 1097 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑃 = 𝑄𝑋 = 0 ))
3414, 33impbid 204 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑋𝐶(𝑃 𝑄)) → (𝑋 = 0𝑃 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050   class class class wbr 4929  cfv 6188  (class class class)co 6976  Basecbs 16339  lecple 16428  joincjn 17412  0.cp0 17505  ccvr 35849  Atomscatm 35850  AtLatcal 35851  HLchlt 35937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-proset 17396  df-poset 17414  df-plt 17426  df-lub 17442  df-glb 17443  df-join 17444  df-meet 17445  df-p0 17507  df-lat 17514  df-clat 17576  df-oposet 35763  df-ol 35765  df-oml 35766  df-covers 35853  df-ats 35854  df-atl 35885  df-cvlat 35909  df-hlat 35938
This theorem is referenced by:  cvrat2  36016  atcvrneN  36017  atcvrj2b  36019
  Copyright terms: Public domain W3C validator