Proof of Theorem atcvrj0
Step | Hyp | Ref
| Expression |
1 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑋 = 0 → (𝑋𝐶(𝑃 ∨ 𝑄) ↔ 0 𝐶(𝑃 ∨ 𝑄))) |
2 | 1 | biimpd 228 |
. . . . . . 7
⊢ (𝑋 = 0 → (𝑋𝐶(𝑃 ∨ 𝑄) → 0 𝐶(𝑃 ∨ 𝑄))) |
3 | 2 | adantl 482 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑋 = 0 ) → (𝑋𝐶(𝑃 ∨ 𝑄) → 0 𝐶(𝑃 ∨ 𝑄))) |
4 | | atcvrj0.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
5 | | atcvrj0.z |
. . . . . . . . 9
⊢ 0 =
(0.‘𝐾) |
6 | | atcvrj0.c |
. . . . . . . . 9
⊢ 𝐶 = ( ⋖ ‘𝐾) |
7 | | atcvrj0.a |
. . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) |
8 | 4, 5, 6, 7 | atcvr0eq 37440 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ( 0 𝐶(𝑃 ∨ 𝑄) ↔ 𝑃 = 𝑄)) |
9 | 8 | 3adant3r1 1181 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ( 0 𝐶(𝑃 ∨ 𝑄) ↔ 𝑃 = 𝑄)) |
10 | 9 | adantr 481 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑋 = 0 ) → ( 0 𝐶(𝑃 ∨ 𝑄) ↔ 𝑃 = 𝑄)) |
11 | 3, 10 | sylibd 238 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑋 = 0 ) → (𝑋𝐶(𝑃 ∨ 𝑄) → 𝑃 = 𝑄)) |
12 | 11 | ex 413 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 = 0 → (𝑋𝐶(𝑃 ∨ 𝑄) → 𝑃 = 𝑄))) |
13 | 12 | com23 86 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋𝐶(𝑃 ∨ 𝑄) → (𝑋 = 0 → 𝑃 = 𝑄))) |
14 | 13 | 3impia 1116 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋𝐶(𝑃 ∨ 𝑄)) → (𝑋 = 0 → 𝑃 = 𝑄)) |
15 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑄)) |
16 | 15 | breq2d 5086 |
. . . . . 6
⊢ (𝑃 = 𝑄 → (𝑋𝐶(𝑃 ∨ 𝑄) ↔ 𝑋𝐶(𝑄 ∨ 𝑄))) |
17 | 16 | biimpac 479 |
. . . . 5
⊢ ((𝑋𝐶(𝑃 ∨ 𝑄) ∧ 𝑃 = 𝑄) → 𝑋𝐶(𝑄 ∨ 𝑄)) |
18 | | simpr3 1195 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐴) |
19 | 4, 7 | hlatjidm 37383 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑄 ∨ 𝑄) = 𝑄) |
20 | 18, 19 | syldan 591 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑄 ∨ 𝑄) = 𝑄) |
21 | 20 | breq2d 5086 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋𝐶(𝑄 ∨ 𝑄) ↔ 𝑋𝐶𝑄)) |
22 | | hlatl 37374 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
23 | 22 | adantr 481 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ AtLat) |
24 | | simpr1 1193 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑋 ∈ 𝐵) |
25 | | atcvrj0.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) |
26 | | eqid 2738 |
. . . . . . . . 9
⊢
(le‘𝐾) =
(le‘𝐾) |
27 | 25, 26, 5, 6, 7 | atcvreq0 37328 |
. . . . . . . 8
⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑋𝐶𝑄 ↔ 𝑋 = 0 )) |
28 | 23, 24, 18, 27 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋𝐶𝑄 ↔ 𝑋 = 0 )) |
29 | 28 | biimpd 228 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋𝐶𝑄 → 𝑋 = 0 )) |
30 | 21, 29 | sylbid 239 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋𝐶(𝑄 ∨ 𝑄) → 𝑋 = 0 )) |
31 | 17, 30 | syl5 34 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋𝐶(𝑃 ∨ 𝑄) ∧ 𝑃 = 𝑄) → 𝑋 = 0 )) |
32 | 31 | expd 416 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋𝐶(𝑃 ∨ 𝑄) → (𝑃 = 𝑄 → 𝑋 = 0 ))) |
33 | 32 | 3impia 1116 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋𝐶(𝑃 ∨ 𝑄)) → (𝑃 = 𝑄 → 𝑋 = 0 )) |
34 | 14, 33 | impbid 211 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋𝐶(𝑃 ∨ 𝑄)) → (𝑋 = 0 ↔ 𝑃 = 𝑄)) |