Proof of Theorem atcvrj0
| Step | Hyp | Ref
| Expression |
| 1 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑋 = 0 → (𝑋𝐶(𝑃 ∨ 𝑄) ↔ 0 𝐶(𝑃 ∨ 𝑄))) |
| 2 | 1 | biimpd 229 |
. . . . . . 7
⊢ (𝑋 = 0 → (𝑋𝐶(𝑃 ∨ 𝑄) → 0 𝐶(𝑃 ∨ 𝑄))) |
| 3 | 2 | adantl 481 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑋 = 0 ) → (𝑋𝐶(𝑃 ∨ 𝑄) → 0 𝐶(𝑃 ∨ 𝑄))) |
| 4 | | atcvrj0.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
| 5 | | atcvrj0.z |
. . . . . . . . 9
⊢ 0 =
(0.‘𝐾) |
| 6 | | atcvrj0.c |
. . . . . . . . 9
⊢ 𝐶 = ( ⋖ ‘𝐾) |
| 7 | | atcvrj0.a |
. . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) |
| 8 | 4, 5, 6, 7 | atcvr0eq 39428 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ( 0 𝐶(𝑃 ∨ 𝑄) ↔ 𝑃 = 𝑄)) |
| 9 | 8 | 3adant3r1 1183 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ( 0 𝐶(𝑃 ∨ 𝑄) ↔ 𝑃 = 𝑄)) |
| 10 | 9 | adantr 480 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑋 = 0 ) → ( 0 𝐶(𝑃 ∨ 𝑄) ↔ 𝑃 = 𝑄)) |
| 11 | 3, 10 | sylibd 239 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑋 = 0 ) → (𝑋𝐶(𝑃 ∨ 𝑄) → 𝑃 = 𝑄)) |
| 12 | 11 | ex 412 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 = 0 → (𝑋𝐶(𝑃 ∨ 𝑄) → 𝑃 = 𝑄))) |
| 13 | 12 | com23 86 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋𝐶(𝑃 ∨ 𝑄) → (𝑋 = 0 → 𝑃 = 𝑄))) |
| 14 | 13 | 3impia 1118 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋𝐶(𝑃 ∨ 𝑄)) → (𝑋 = 0 → 𝑃 = 𝑄)) |
| 15 | | oveq1 7438 |
. . . . . . 7
⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑄)) |
| 16 | 15 | breq2d 5155 |
. . . . . 6
⊢ (𝑃 = 𝑄 → (𝑋𝐶(𝑃 ∨ 𝑄) ↔ 𝑋𝐶(𝑄 ∨ 𝑄))) |
| 17 | 16 | biimpac 478 |
. . . . 5
⊢ ((𝑋𝐶(𝑃 ∨ 𝑄) ∧ 𝑃 = 𝑄) → 𝑋𝐶(𝑄 ∨ 𝑄)) |
| 18 | | simpr3 1197 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐴) |
| 19 | 4, 7 | hlatjidm 39370 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑄 ∨ 𝑄) = 𝑄) |
| 20 | 18, 19 | syldan 591 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑄 ∨ 𝑄) = 𝑄) |
| 21 | 20 | breq2d 5155 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋𝐶(𝑄 ∨ 𝑄) ↔ 𝑋𝐶𝑄)) |
| 22 | | hlatl 39361 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| 23 | 22 | adantr 480 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ AtLat) |
| 24 | | simpr1 1195 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑋 ∈ 𝐵) |
| 25 | | atcvrj0.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) |
| 26 | | eqid 2737 |
. . . . . . . . 9
⊢
(le‘𝐾) =
(le‘𝐾) |
| 27 | 25, 26, 5, 6, 7 | atcvreq0 39315 |
. . . . . . . 8
⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑋𝐶𝑄 ↔ 𝑋 = 0 )) |
| 28 | 23, 24, 18, 27 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋𝐶𝑄 ↔ 𝑋 = 0 )) |
| 29 | 28 | biimpd 229 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋𝐶𝑄 → 𝑋 = 0 )) |
| 30 | 21, 29 | sylbid 240 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋𝐶(𝑄 ∨ 𝑄) → 𝑋 = 0 )) |
| 31 | 17, 30 | syl5 34 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋𝐶(𝑃 ∨ 𝑄) ∧ 𝑃 = 𝑄) → 𝑋 = 0 )) |
| 32 | 31 | expd 415 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋𝐶(𝑃 ∨ 𝑄) → (𝑃 = 𝑄 → 𝑋 = 0 ))) |
| 33 | 32 | 3impia 1118 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋𝐶(𝑃 ∨ 𝑄)) → (𝑃 = 𝑄 → 𝑋 = 0 )) |
| 34 | 14, 33 | impbid 212 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋𝐶(𝑃 ∨ 𝑄)) → (𝑋 = 0 ↔ 𝑃 = 𝑄)) |