MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatswrd Structured version   Visualization version   GIF version

Theorem ccatswrd 14556
Description: Joining two adjacent subwords makes a longer subword. (Contributed by Stefan O'Rear, 20-Aug-2015.)
Assertion
Ref Expression
ccatswrd ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 substr ⟨𝑋, 𝑍⟩))

Proof of Theorem ccatswrd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 swrdcl 14533 . . . . . 6 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴)
21adantr 481 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴)
3 swrdcl 14533 . . . . . 6 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
43adantr 481 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
5 ccatcl 14462 . . . . 5 (((𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴)
62, 4, 5syl2anc 584 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴)
7 wrdfn 14416 . . . 4 (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴 → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))))
86, 7syl 17 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))))
9 ccatlen 14463 . . . . . . 7 (((𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴) → (♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))
102, 4, 9syl2anc 584 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))
11 simpl 483 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑆 ∈ Word 𝐴)
12 simpr1 1194 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑋 ∈ (0...𝑌))
13 simpr2 1195 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ (0...𝑍))
14 simpr3 1196 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑍 ∈ (0...(♯‘𝑆)))
15 fzass4 13479 . . . . . . . . . . 11 ((𝑌 ∈ (0...(♯‘𝑆)) ∧ 𝑍 ∈ (𝑌...(♯‘𝑆))) ↔ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))))
1615biimpri 227 . . . . . . . . . 10 ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (𝑌 ∈ (0...(♯‘𝑆)) ∧ 𝑍 ∈ (𝑌...(♯‘𝑆))))
1716simpld 495 . . . . . . . . 9 ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → 𝑌 ∈ (0...(♯‘𝑆)))
1813, 14, 17syl2anc 584 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ (0...(♯‘𝑆)))
19 swrdlen 14535 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) = (𝑌𝑋))
2011, 12, 18, 19syl3anc 1371 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) = (𝑌𝑋))
21 swrdlen 14535 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑍𝑌))
22213adant3r1 1182 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑍𝑌))
2320, 22oveq12d 7375 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))) = ((𝑌𝑋) + (𝑍𝑌)))
2413elfzelzd 13442 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℤ)
2524zcnd 12608 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℂ)
2612elfzelzd 13442 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑋 ∈ ℤ)
2726zcnd 12608 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑋 ∈ ℂ)
2814elfzelzd 13442 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑍 ∈ ℤ)
2928zcnd 12608 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑍 ∈ ℂ)
3025, 27, 29npncan3d 11548 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑌𝑋) + (𝑍𝑌)) = (𝑍𝑋))
3110, 23, 303eqtrd 2780 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = (𝑍𝑋))
3231oveq2d 7373 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (0..^(♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))) = (0..^(𝑍𝑋)))
3332fneq2d 6596 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))) ↔ ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(𝑍𝑋))))
348, 33mpbid 231 . 2 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(𝑍𝑋)))
35 swrdcl 14533 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑋, 𝑍⟩) ∈ Word 𝐴)
3635adantr 481 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑋, 𝑍⟩) ∈ Word 𝐴)
37 wrdfn 14416 . . . 4 ((𝑆 substr ⟨𝑋, 𝑍⟩) ∈ Word 𝐴 → (𝑆 substr ⟨𝑋, 𝑍⟩) Fn (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑍⟩))))
3836, 37syl 17 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑋, 𝑍⟩) Fn (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑍⟩))))
39 fzass4 13479 . . . . . . . . 9 ((𝑋 ∈ (0...𝑍) ∧ 𝑌 ∈ (𝑋...𝑍)) ↔ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍)))
4039biimpri 227 . . . . . . . 8 ((𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍)) → (𝑋 ∈ (0...𝑍) ∧ 𝑌 ∈ (𝑋...𝑍)))
4140simpld 495 . . . . . . 7 ((𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍)) → 𝑋 ∈ (0...𝑍))
4212, 13, 41syl2anc 584 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑋 ∈ (0...𝑍))
43 swrdlen 14535 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑋 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑋, 𝑍⟩)) = (𝑍𝑋))
4411, 42, 14, 43syl3anc 1371 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘(𝑆 substr ⟨𝑋, 𝑍⟩)) = (𝑍𝑋))
4544oveq2d 7373 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑍⟩))) = (0..^(𝑍𝑋)))
4645fneq2d 6596 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑍⟩) Fn (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑍⟩))) ↔ (𝑆 substr ⟨𝑋, 𝑍⟩) Fn (0..^(𝑍𝑋))))
4738, 46mpbid 231 . 2 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑋, 𝑍⟩) Fn (0..^(𝑍𝑋)))
4824, 26zsubcld 12612 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑌𝑋) ∈ ℤ)
4948anim1ci 616 . . . . 5 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → (𝑥 ∈ (0..^(𝑍𝑋)) ∧ (𝑌𝑋) ∈ ℤ))
50 fzospliti 13604 . . . . 5 ((𝑥 ∈ (0..^(𝑍𝑋)) ∧ (𝑌𝑋) ∈ ℤ) → (𝑥 ∈ (0..^(𝑌𝑋)) ∨ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))))
5149, 50syl 17 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → (𝑥 ∈ (0..^(𝑌𝑋)) ∨ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))))
521ad2antrr 724 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴)
533ad2antrr 724 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
5420oveq2d 7373 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) = (0..^(𝑌𝑋)))
5554eleq2d 2823 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) ↔ 𝑥 ∈ (0..^(𝑌𝑋))))
5655biimpar 478 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → 𝑥 ∈ (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))))
57 ccatval1 14465 . . . . . . 7 (((𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴𝑥 ∈ (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑋, 𝑌⟩)‘𝑥))
5852, 53, 56, 57syl3anc 1371 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑋, 𝑌⟩)‘𝑥))
59 simpll 765 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → 𝑆 ∈ Word 𝐴)
60 simplr1 1215 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → 𝑋 ∈ (0...𝑌))
6118adantr 481 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → 𝑌 ∈ (0...(♯‘𝑆)))
62 simpr 485 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → 𝑥 ∈ (0..^(𝑌𝑋)))
63 swrdfv 14536 . . . . . . 7 (((𝑆 ∈ Word 𝐴𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → ((𝑆 substr ⟨𝑋, 𝑌⟩)‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
6459, 60, 61, 62, 63syl31anc 1373 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → ((𝑆 substr ⟨𝑋, 𝑌⟩)‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
6558, 64eqtrd 2776 . . . . 5 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
661ad2antrr 724 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴)
673ad2antrr 724 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
6823, 30eqtrd 2776 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))) = (𝑍𝑋))
6920, 68oveq12d 7375 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))..^((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))) = ((𝑌𝑋)..^(𝑍𝑋)))
7069eleq2d 2823 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))..^((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))) ↔ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))))
7170biimpar 478 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑥 ∈ ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))..^((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))))
72 ccatval2 14466 . . . . . . 7 (((𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴𝑥 ∈ ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))..^((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)))))
7366, 67, 71, 72syl3anc 1371 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)))))
74 simpll 765 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑆 ∈ Word 𝐴)
75 simplr2 1216 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑌 ∈ (0...𝑍))
76 simplr3 1217 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑍 ∈ (0...(♯‘𝑆)))
7720oveq2d 7373 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) = (𝑥 − (𝑌𝑋)))
7877adantr 481 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) = (𝑥 − (𝑌𝑋)))
7930oveq2d 7373 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑌𝑋)..^((𝑌𝑋) + (𝑍𝑌))) = ((𝑌𝑋)..^(𝑍𝑋)))
8079eleq2d 2823 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ ((𝑌𝑋)..^((𝑌𝑋) + (𝑍𝑌))) ↔ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))))
8180biimpar 478 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑥 ∈ ((𝑌𝑋)..^((𝑌𝑋) + (𝑍𝑌))))
8228, 24zsubcld 12612 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑍𝑌) ∈ ℤ)
8382adantr 481 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑍𝑌) ∈ ℤ)
84 fzosubel3 13633 . . . . . . . . 9 ((𝑥 ∈ ((𝑌𝑋)..^((𝑌𝑋) + (𝑍𝑌))) ∧ (𝑍𝑌) ∈ ℤ) → (𝑥 − (𝑌𝑋)) ∈ (0..^(𝑍𝑌)))
8581, 83, 84syl2anc 584 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑥 − (𝑌𝑋)) ∈ (0..^(𝑍𝑌)))
8678, 85eqeltrd 2838 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) ∈ (0..^(𝑍𝑌)))
87 swrdfv 14536 . . . . . . 7 (((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) ∧ (𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) ∈ (0..^(𝑍𝑌))) → ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)))) = (𝑆‘((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌)))
8874, 75, 76, 86, 87syl31anc 1373 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)))) = (𝑆‘((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌)))
8977oveq1d 7372 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌) = ((𝑥 − (𝑌𝑋)) + 𝑌))
9089adantr 481 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → ((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌) = ((𝑥 − (𝑌𝑋)) + 𝑌))
91 elfzoelz 13572 . . . . . . . . . . 11 (𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋)) → 𝑥 ∈ ℤ)
9291zcnd 12608 . . . . . . . . . 10 (𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋)) → 𝑥 ∈ ℂ)
9392adantl 482 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑥 ∈ ℂ)
9425, 27subcld 11512 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑌𝑋) ∈ ℂ)
9594adantr 481 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑌𝑋) ∈ ℂ)
9625adantr 481 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑌 ∈ ℂ)
9793, 95, 96subadd23d 11534 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → ((𝑥 − (𝑌𝑋)) + 𝑌) = (𝑥 + (𝑌 − (𝑌𝑋))))
9825, 27nncand 11517 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑌 − (𝑌𝑋)) = 𝑋)
9998oveq2d 7373 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 + (𝑌 − (𝑌𝑋))) = (𝑥 + 𝑋))
10099adantr 481 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑥 + (𝑌 − (𝑌𝑋))) = (𝑥 + 𝑋))
10190, 97, 1003eqtrd 2780 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → ((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌) = (𝑥 + 𝑋))
102101fveq2d 6846 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑆‘((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌)) = (𝑆‘(𝑥 + 𝑋)))
10373, 88, 1023eqtrd 2780 . . . . 5 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
10465, 103jaodan 956 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ (𝑥 ∈ (0..^(𝑌𝑋)) ∨ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋)))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
10551, 104syldan 591 . . 3 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
106 simpll 765 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → 𝑆 ∈ Word 𝐴)
10742adantr 481 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → 𝑋 ∈ (0...𝑍))
108 simplr3 1217 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → 𝑍 ∈ (0...(♯‘𝑆)))
109 simpr 485 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → 𝑥 ∈ (0..^(𝑍𝑋)))
110 swrdfv 14536 . . . 4 (((𝑆 ∈ Word 𝐴𝑋 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → ((𝑆 substr ⟨𝑋, 𝑍⟩)‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
111106, 107, 108, 109, 110syl31anc 1373 . . 3 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → ((𝑆 substr ⟨𝑋, 𝑍⟩)‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
112105, 111eqtr4d 2779 . 2 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑋, 𝑍⟩)‘𝑥))
11334, 47, 112eqfnfvd 6985 1 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 substr ⟨𝑋, 𝑍⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  cop 4592   Fn wfn 6491  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051   + caddc 11054  cmin 11385  cz 12499  ...cfz 13424  ..^cfzo 13567  chash 14230  Word cword 14402   ++ cconcat 14458   substr csubstr 14528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-concat 14459  df-substr 14529
This theorem is referenced by:  swrds2  14829  efgredleme  19525
  Copyright terms: Public domain W3C validator