MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatswrd Structured version   Visualization version   GIF version

Theorem ccatswrd 14309
Description: Joining two adjacent subwords makes a longer subword. (Contributed by Stefan O'Rear, 20-Aug-2015.)
Assertion
Ref Expression
ccatswrd ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 substr ⟨𝑋, 𝑍⟩))

Proof of Theorem ccatswrd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 swrdcl 14286 . . . . . 6 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴)
21adantr 480 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴)
3 swrdcl 14286 . . . . . 6 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
43adantr 480 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
5 ccatcl 14205 . . . . 5 (((𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴)
62, 4, 5syl2anc 583 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴)
7 wrdfn 14159 . . . 4 (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴 → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))))
86, 7syl 17 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))))
9 ccatlen 14206 . . . . . . 7 (((𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴) → (♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))
102, 4, 9syl2anc 583 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))
11 simpl 482 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑆 ∈ Word 𝐴)
12 simpr1 1192 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑋 ∈ (0...𝑌))
13 simpr2 1193 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ (0...𝑍))
14 simpr3 1194 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑍 ∈ (0...(♯‘𝑆)))
15 fzass4 13223 . . . . . . . . . . 11 ((𝑌 ∈ (0...(♯‘𝑆)) ∧ 𝑍 ∈ (𝑌...(♯‘𝑆))) ↔ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))))
1615biimpri 227 . . . . . . . . . 10 ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (𝑌 ∈ (0...(♯‘𝑆)) ∧ 𝑍 ∈ (𝑌...(♯‘𝑆))))
1716simpld 494 . . . . . . . . 9 ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → 𝑌 ∈ (0...(♯‘𝑆)))
1813, 14, 17syl2anc 583 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ (0...(♯‘𝑆)))
19 swrdlen 14288 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) = (𝑌𝑋))
2011, 12, 18, 19syl3anc 1369 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) = (𝑌𝑋))
21 swrdlen 14288 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑍𝑌))
22213adant3r1 1180 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑍𝑌))
2320, 22oveq12d 7273 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))) = ((𝑌𝑋) + (𝑍𝑌)))
2413elfzelzd 13186 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℤ)
2524zcnd 12356 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℂ)
2612elfzelzd 13186 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑋 ∈ ℤ)
2726zcnd 12356 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑋 ∈ ℂ)
2814elfzelzd 13186 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑍 ∈ ℤ)
2928zcnd 12356 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑍 ∈ ℂ)
3025, 27, 29npncan3d 11298 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑌𝑋) + (𝑍𝑌)) = (𝑍𝑋))
3110, 23, 303eqtrd 2782 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = (𝑍𝑋))
3231oveq2d 7271 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (0..^(♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))) = (0..^(𝑍𝑋)))
3332fneq2d 6511 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))) ↔ ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(𝑍𝑋))))
348, 33mpbid 231 . 2 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(𝑍𝑋)))
35 swrdcl 14286 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑋, 𝑍⟩) ∈ Word 𝐴)
3635adantr 480 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑋, 𝑍⟩) ∈ Word 𝐴)
37 wrdfn 14159 . . . 4 ((𝑆 substr ⟨𝑋, 𝑍⟩) ∈ Word 𝐴 → (𝑆 substr ⟨𝑋, 𝑍⟩) Fn (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑍⟩))))
3836, 37syl 17 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑋, 𝑍⟩) Fn (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑍⟩))))
39 fzass4 13223 . . . . . . . . 9 ((𝑋 ∈ (0...𝑍) ∧ 𝑌 ∈ (𝑋...𝑍)) ↔ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍)))
4039biimpri 227 . . . . . . . 8 ((𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍)) → (𝑋 ∈ (0...𝑍) ∧ 𝑌 ∈ (𝑋...𝑍)))
4140simpld 494 . . . . . . 7 ((𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍)) → 𝑋 ∈ (0...𝑍))
4212, 13, 41syl2anc 583 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑋 ∈ (0...𝑍))
43 swrdlen 14288 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑋 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑋, 𝑍⟩)) = (𝑍𝑋))
4411, 42, 14, 43syl3anc 1369 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘(𝑆 substr ⟨𝑋, 𝑍⟩)) = (𝑍𝑋))
4544oveq2d 7271 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑍⟩))) = (0..^(𝑍𝑋)))
4645fneq2d 6511 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑍⟩) Fn (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑍⟩))) ↔ (𝑆 substr ⟨𝑋, 𝑍⟩) Fn (0..^(𝑍𝑋))))
4738, 46mpbid 231 . 2 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑋, 𝑍⟩) Fn (0..^(𝑍𝑋)))
4824, 26zsubcld 12360 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑌𝑋) ∈ ℤ)
4948anim1ci 615 . . . . 5 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → (𝑥 ∈ (0..^(𝑍𝑋)) ∧ (𝑌𝑋) ∈ ℤ))
50 fzospliti 13347 . . . . 5 ((𝑥 ∈ (0..^(𝑍𝑋)) ∧ (𝑌𝑋) ∈ ℤ) → (𝑥 ∈ (0..^(𝑌𝑋)) ∨ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))))
5149, 50syl 17 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → (𝑥 ∈ (0..^(𝑌𝑋)) ∨ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))))
521ad2antrr 722 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴)
533ad2antrr 722 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
5420oveq2d 7271 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) = (0..^(𝑌𝑋)))
5554eleq2d 2824 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) ↔ 𝑥 ∈ (0..^(𝑌𝑋))))
5655biimpar 477 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → 𝑥 ∈ (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))))
57 ccatval1 14209 . . . . . . 7 (((𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴𝑥 ∈ (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑋, 𝑌⟩)‘𝑥))
5852, 53, 56, 57syl3anc 1369 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑋, 𝑌⟩)‘𝑥))
59 simpll 763 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → 𝑆 ∈ Word 𝐴)
60 simplr1 1213 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → 𝑋 ∈ (0...𝑌))
6118adantr 480 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → 𝑌 ∈ (0...(♯‘𝑆)))
62 simpr 484 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → 𝑥 ∈ (0..^(𝑌𝑋)))
63 swrdfv 14289 . . . . . . 7 (((𝑆 ∈ Word 𝐴𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → ((𝑆 substr ⟨𝑋, 𝑌⟩)‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
6459, 60, 61, 62, 63syl31anc 1371 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → ((𝑆 substr ⟨𝑋, 𝑌⟩)‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
6558, 64eqtrd 2778 . . . . 5 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
661ad2antrr 722 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴)
673ad2antrr 722 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
6823, 30eqtrd 2778 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))) = (𝑍𝑋))
6920, 68oveq12d 7273 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))..^((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))) = ((𝑌𝑋)..^(𝑍𝑋)))
7069eleq2d 2824 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))..^((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))) ↔ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))))
7170biimpar 477 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑥 ∈ ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))..^((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))))
72 ccatval2 14211 . . . . . . 7 (((𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴𝑥 ∈ ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))..^((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)))))
7366, 67, 71, 72syl3anc 1369 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)))))
74 simpll 763 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑆 ∈ Word 𝐴)
75 simplr2 1214 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑌 ∈ (0...𝑍))
76 simplr3 1215 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑍 ∈ (0...(♯‘𝑆)))
7720oveq2d 7271 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) = (𝑥 − (𝑌𝑋)))
7877adantr 480 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) = (𝑥 − (𝑌𝑋)))
7930oveq2d 7271 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑌𝑋)..^((𝑌𝑋) + (𝑍𝑌))) = ((𝑌𝑋)..^(𝑍𝑋)))
8079eleq2d 2824 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ ((𝑌𝑋)..^((𝑌𝑋) + (𝑍𝑌))) ↔ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))))
8180biimpar 477 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑥 ∈ ((𝑌𝑋)..^((𝑌𝑋) + (𝑍𝑌))))
8228, 24zsubcld 12360 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑍𝑌) ∈ ℤ)
8382adantr 480 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑍𝑌) ∈ ℤ)
84 fzosubel3 13376 . . . . . . . . 9 ((𝑥 ∈ ((𝑌𝑋)..^((𝑌𝑋) + (𝑍𝑌))) ∧ (𝑍𝑌) ∈ ℤ) → (𝑥 − (𝑌𝑋)) ∈ (0..^(𝑍𝑌)))
8581, 83, 84syl2anc 583 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑥 − (𝑌𝑋)) ∈ (0..^(𝑍𝑌)))
8678, 85eqeltrd 2839 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) ∈ (0..^(𝑍𝑌)))
87 swrdfv 14289 . . . . . . 7 (((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) ∧ (𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) ∈ (0..^(𝑍𝑌))) → ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)))) = (𝑆‘((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌)))
8874, 75, 76, 86, 87syl31anc 1371 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)))) = (𝑆‘((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌)))
8977oveq1d 7270 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌) = ((𝑥 − (𝑌𝑋)) + 𝑌))
9089adantr 480 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → ((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌) = ((𝑥 − (𝑌𝑋)) + 𝑌))
91 elfzoelz 13316 . . . . . . . . . . 11 (𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋)) → 𝑥 ∈ ℤ)
9291zcnd 12356 . . . . . . . . . 10 (𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋)) → 𝑥 ∈ ℂ)
9392adantl 481 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑥 ∈ ℂ)
9425, 27subcld 11262 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑌𝑋) ∈ ℂ)
9594adantr 480 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑌𝑋) ∈ ℂ)
9625adantr 480 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑌 ∈ ℂ)
9793, 95, 96subadd23d 11284 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → ((𝑥 − (𝑌𝑋)) + 𝑌) = (𝑥 + (𝑌 − (𝑌𝑋))))
9825, 27nncand 11267 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑌 − (𝑌𝑋)) = 𝑋)
9998oveq2d 7271 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 + (𝑌 − (𝑌𝑋))) = (𝑥 + 𝑋))
10099adantr 480 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑥 + (𝑌 − (𝑌𝑋))) = (𝑥 + 𝑋))
10190, 97, 1003eqtrd 2782 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → ((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌) = (𝑥 + 𝑋))
102101fveq2d 6760 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑆‘((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌)) = (𝑆‘(𝑥 + 𝑋)))
10373, 88, 1023eqtrd 2782 . . . . 5 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
10465, 103jaodan 954 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ (𝑥 ∈ (0..^(𝑌𝑋)) ∨ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋)))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
10551, 104syldan 590 . . 3 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
106 simpll 763 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → 𝑆 ∈ Word 𝐴)
10742adantr 480 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → 𝑋 ∈ (0...𝑍))
108 simplr3 1215 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → 𝑍 ∈ (0...(♯‘𝑆)))
109 simpr 484 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → 𝑥 ∈ (0..^(𝑍𝑋)))
110 swrdfv 14289 . . . 4 (((𝑆 ∈ Word 𝐴𝑋 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → ((𝑆 substr ⟨𝑋, 𝑍⟩)‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
111106, 107, 108, 109, 110syl31anc 1371 . . 3 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → ((𝑆 substr ⟨𝑋, 𝑍⟩)‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
112105, 111eqtr4d 2781 . 2 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑋, 𝑍⟩)‘𝑥))
11334, 47, 112eqfnfvd 6894 1 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 substr ⟨𝑋, 𝑍⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  cop 4564   Fn wfn 6413  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802   + caddc 10805  cmin 11135  cz 12249  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   ++ cconcat 14201   substr csubstr 14281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-substr 14282
This theorem is referenced by:  swrds2  14581  efgredleme  19264
  Copyright terms: Public domain W3C validator