MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphdivcl Structured version   Visualization version   GIF version

Theorem cphdivcl 24444
Description: The scalar field of a subcomplex pre-Hilbert space is closed under reciprocal. (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
cphsca.f 𝐹 = (Scalar‘𝑊)
cphsca.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphdivcl ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾)

Proof of Theorem cphdivcl
StepHypRef Expression
1 cphsca.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
2 cphsca.k . . . . . . 7 𝐾 = (Base‘𝐹)
31, 2cphsubrg 24442 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld))
43adantr 481 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐾 ∈ (SubRing‘ℂfld))
5 cnfldbas 20699 . . . . . 6 ℂ = (Base‘ℂfld)
65subrgss 20122 . . . . 5 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
74, 6syl 17 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐾 ⊆ ℂ)
8 simpr1 1193 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐴𝐾)
97, 8sseldd 3932 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐴 ∈ ℂ)
10 simpr2 1194 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵𝐾)
117, 10sseldd 3932 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵 ∈ ℂ)
12 simpr3 1195 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵 ≠ 0)
139, 11, 12divrecd 11847 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
141, 2cphreccl 24443 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝐾𝐵 ≠ 0) → (1 / 𝐵) ∈ 𝐾)
15143adant3r1 1181 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (1 / 𝐵) ∈ 𝐾)
16 cnfldmul 20701 . . . 4 · = (.r‘ℂfld)
1716subrgmcl 20133 . . 3 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐴𝐾 ∧ (1 / 𝐵) ∈ 𝐾) → (𝐴 · (1 / 𝐵)) ∈ 𝐾)
184, 8, 15, 17syl3anc 1370 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 · (1 / 𝐵)) ∈ 𝐾)
1913, 18eqeltrd 2837 1 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wss 3897  cfv 6473  (class class class)co 7329  cc 10962  0cc0 10964  1c1 10965   · cmul 10969   / cdiv 11725  Basecbs 17001  Scalarcsca 17054  SubRingcsubrg 20117  fldccnfld 20695  ℂPreHilccph 24428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-addf 11043  ax-mulf 11044
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-tpos 8104  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-z 12413  df-dec 12531  df-uz 12676  df-fz 13333  df-seq 13815  df-exp 13876  df-struct 16937  df-sets 16954  df-slot 16972  df-ndx 16984  df-base 17002  df-ress 17031  df-plusg 17064  df-mulr 17065  df-starv 17066  df-tset 17070  df-ple 17071  df-ds 17073  df-unif 17074  df-0g 17241  df-mgm 18415  df-sgrp 18464  df-mnd 18475  df-grp 18668  df-minusg 18669  df-subg 18840  df-cmn 19475  df-mgp 19808  df-ur 19825  df-ring 19872  df-cring 19873  df-oppr 19949  df-dvdsr 19970  df-unit 19971  df-invr 20001  df-dvr 20012  df-drng 20087  df-subrg 20119  df-lvec 20463  df-cnfld 20696  df-phl 20929  df-cph 24430
This theorem is referenced by:  cphsqrtcl2  24448  pjthlem1  24699
  Copyright terms: Public domain W3C validator