![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > seglemin | Structured version Visualization version GIF version |
Description: Any segment is at least as long as a degenerate segment. Theorem 5.11 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.) |
Ref | Expression |
---|---|
seglemin | ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ⟨𝐴, 𝐴⟩ Seg≤ ⟨𝐵, 𝐶⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr2 1194 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) | |
2 | btwntriv1 35293 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐵 Btwn ⟨𝐵, 𝐶⟩) | |
3 | 2 | 3adant3r1 1181 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐵 Btwn ⟨𝐵, 𝐶⟩) |
4 | cgrtriv 35279 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝐵⟩) | |
5 | 4 | 3adant3r3 1183 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝐵⟩) |
6 | breq1 5151 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐵, 𝐶⟩)) | |
7 | opeq2 4874 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ⟨𝐵, 𝑦⟩ = ⟨𝐵, 𝐵⟩) | |
8 | 7 | breq2d 5160 | . . . . 5 ⊢ (𝑦 = 𝐵 → (⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝑦⟩ ↔ ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝐵⟩)) |
9 | 6, 8 | anbi12d 630 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝑦 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝑦⟩) ↔ (𝐵 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝐵⟩))) |
10 | 9 | rspcev 3612 | . . 3 ⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ (𝐵 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝐵⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝑦⟩)) |
11 | 1, 3, 5, 10 | syl12anc 834 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝑦⟩)) |
12 | simpl 482 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) | |
13 | simpr1 1193 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁)) | |
14 | simpr3 1195 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁)) | |
15 | brsegle 35385 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐴⟩ Seg≤ ⟨𝐵, 𝐶⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝑦⟩))) | |
16 | 12, 13, 13, 1, 14, 15 | syl122anc 1378 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐴⟩ Seg≤ ⟨𝐵, 𝐶⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝑦⟩))) |
17 | 11, 16 | mpbird 257 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ⟨𝐴, 𝐴⟩ Seg≤ ⟨𝐵, 𝐶⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 ⟨cop 4634 class class class wbr 5148 ‘cfv 6543 ℕcn 12217 𝔼cee 28414 Btwn cbtwn 28415 Cgrccgr 28416 Seg≤ csegle 35383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9640 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-oi 9509 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-ico 13335 df-icc 13336 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-sum 15638 df-ee 28417 df-btwn 28418 df-cgr 28419 df-segle 35384 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |