Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seglemin Structured version   Visualization version   GIF version

Theorem seglemin 35390
Description: Any segment is at least as long as a degenerate segment. Theorem 5.11 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
seglemin ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ⟨𝐴, 𝐴⟩ Seg𝐵, 𝐶⟩)

Proof of Theorem seglemin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr2 1194 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
2 btwntriv1 35293 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐵 Btwn ⟨𝐵, 𝐶⟩)
323adant3r1 1181 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐵 Btwn ⟨𝐵, 𝐶⟩)
4 cgrtriv 35279 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝐵⟩)
543adant3r3 1183 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝐵⟩)
6 breq1 5151 . . . . 5 (𝑦 = 𝐵 → (𝑦 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐵, 𝐶⟩))
7 opeq2 4874 . . . . . 6 (𝑦 = 𝐵 → ⟨𝐵, 𝑦⟩ = ⟨𝐵, 𝐵⟩)
87breq2d 5160 . . . . 5 (𝑦 = 𝐵 → (⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝑦⟩ ↔ ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝐵⟩))
96, 8anbi12d 630 . . . 4 (𝑦 = 𝐵 → ((𝑦 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝑦⟩) ↔ (𝐵 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝐵⟩)))
109rspcev 3612 . . 3 ((𝐵 ∈ (𝔼‘𝑁) ∧ (𝐵 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝐵⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝑦⟩))
111, 3, 5, 10syl12anc 834 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝑦⟩))
12 simpl 482 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
13 simpr1 1193 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
14 simpr3 1195 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
15 brsegle 35385 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐴⟩ Seg𝐵, 𝐶⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝑦⟩)))
1612, 13, 13, 1, 14, 15syl122anc 1378 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐴⟩ Seg𝐵, 𝐶⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, 𝐴⟩Cgr⟨𝐵, 𝑦⟩)))
1711, 16mpbird 257 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ⟨𝐴, 𝐴⟩ Seg𝐵, 𝐶⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wrex 3069  cop 4634   class class class wbr 5148  cfv 6543  cn 12217  𝔼cee 28414   Btwn cbtwn 28415  Cgrccgr 28416   Seg csegle 35383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9640  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-sup 9441  df-oi 9509  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-rp 12980  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-seq 13972  df-exp 14033  df-hash 14296  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-sum 15638  df-ee 28417  df-btwn 28418  df-cgr 28419  df-segle 35384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator