MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincosq2sgn Structured version   Visualization version   GIF version

Theorem sincosq2sgn 24472
Description: The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq2sgn (𝐴 ∈ ((π / 2)(,)π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))

Proof of Theorem sincosq2sgn
StepHypRef Expression
1 halfpire 24437 . . 3 (π / 2) ∈ ℝ
2 pire 24431 . . 3 π ∈ ℝ
3 rexr 10287 . . . 4 ((π / 2) ∈ ℝ → (π / 2) ∈ ℝ*)
4 rexr 10287 . . . 4 (π ∈ ℝ → π ∈ ℝ*)
5 elioo2 12421 . . . 4 (((π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π)))
63, 4, 5syl2an 583 . . 3 (((π / 2) ∈ ℝ ∧ π ∈ ℝ) → (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π)))
71, 2, 6mp2an 672 . 2 (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π))
8 resubcl 10547 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 − (π / 2)) ∈ ℝ)
91, 8mpan2 671 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℝ)
10 0xr 10288 . . . . . . . . . 10 0 ∈ ℝ*
111rexri 10299 . . . . . . . . . 10 (π / 2) ∈ ℝ*
12 elioo2 12421 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((𝐴 − (π / 2)) ∈ (0(,)(π / 2)) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ 0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2))))
1310, 11, 12mp2an 672 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ (0(,)(π / 2)) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ 0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)))
14 sincosq1sgn 24471 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ (0(,)(π / 2)) → (0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2)))))
1513, 14sylbir 225 . . . . . . . 8 (((𝐴 − (π / 2)) ∈ ℝ ∧ 0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)) → (0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2)))))
169, 15syl3an1 1166 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)) → (0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2)))))
17163expib 1116 . . . . . 6 (𝐴 ∈ ℝ → ((0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)) → (0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2))))))
18 0re 10242 . . . . . . . . 9 0 ∈ ℝ
19 ltsub13 10711 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (0 < (𝐴 − (π / 2)) ↔ (π / 2) < (𝐴 − 0)))
2018, 1, 19mp3an13 1563 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < (𝐴 − (π / 2)) ↔ (π / 2) < (𝐴 − 0)))
21 recn 10228 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2221subid1d 10583 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − 0) = 𝐴)
2322breq2d 4798 . . . . . . . 8 (𝐴 ∈ ℝ → ((π / 2) < (𝐴 − 0) ↔ (π / 2) < 𝐴))
2420, 23bitrd 268 . . . . . . 7 (𝐴 ∈ ℝ → (0 < (𝐴 − (π / 2)) ↔ (π / 2) < 𝐴))
25 ltsubadd 10700 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((𝐴 − (π / 2)) < (π / 2) ↔ 𝐴 < ((π / 2) + (π / 2))))
261, 1, 25mp3an23 1564 . . . . . . . 8 (𝐴 ∈ ℝ → ((𝐴 − (π / 2)) < (π / 2) ↔ 𝐴 < ((π / 2) + (π / 2))))
27 pidiv2halves 24440 . . . . . . . . 9 ((π / 2) + (π / 2)) = π
2827breq2i 4794 . . . . . . . 8 (𝐴 < ((π / 2) + (π / 2)) ↔ 𝐴 < π)
2926, 28syl6bb 276 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 − (π / 2)) < (π / 2) ↔ 𝐴 < π))
3024, 29anbi12d 616 . . . . . 6 (𝐴 ∈ ℝ → ((0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)) ↔ ((π / 2) < 𝐴𝐴 < π)))
319resincld 15079 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘(𝐴 − (π / 2))) ∈ ℝ)
3231lt0neg2d 10800 . . . . . . 7 (𝐴 ∈ ℝ → (0 < (sin‘(𝐴 − (π / 2))) ↔ -(sin‘(𝐴 − (π / 2))) < 0))
3332anbi1d 615 . . . . . 6 (𝐴 ∈ ℝ → ((0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2)))) ↔ (-(sin‘(𝐴 − (π / 2))) < 0 ∧ 0 < (cos‘(𝐴 − (π / 2))))))
3417, 30, 333imtr3d 282 . . . . 5 (𝐴 ∈ ℝ → (((π / 2) < 𝐴𝐴 < π) → (-(sin‘(𝐴 − (π / 2))) < 0 ∧ 0 < (cos‘(𝐴 − (π / 2))))))
351recni 10254 . . . . . . . . . 10 (π / 2) ∈ ℂ
36 pncan3 10491 . . . . . . . . . 10 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
3735, 21, 36sylancr 575 . . . . . . . . 9 (𝐴 ∈ ℝ → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
3837fveq2d 6336 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘𝐴))
399recnd 10270 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℂ)
40 coshalfpip 24467 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ℂ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
4139, 40syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
4238, 41eqtr3d 2807 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘𝐴) = -(sin‘(𝐴 − (π / 2))))
4342breq1d 4796 . . . . . 6 (𝐴 ∈ ℝ → ((cos‘𝐴) < 0 ↔ -(sin‘(𝐴 − (π / 2))) < 0))
4437fveq2d 6336 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (sin‘𝐴))
45 sinhalfpip 24465 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ℂ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
4639, 45syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
4744, 46eqtr3d 2807 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘𝐴) = (cos‘(𝐴 − (π / 2))))
4847breq2d 4798 . . . . . 6 (𝐴 ∈ ℝ → (0 < (sin‘𝐴) ↔ 0 < (cos‘(𝐴 − (π / 2)))))
4943, 48anbi12d 616 . . . . 5 (𝐴 ∈ ℝ → (((cos‘𝐴) < 0 ∧ 0 < (sin‘𝐴)) ↔ (-(sin‘(𝐴 − (π / 2))) < 0 ∧ 0 < (cos‘(𝐴 − (π / 2))))))
5034, 49sylibrd 249 . . . 4 (𝐴 ∈ ℝ → (((π / 2) < 𝐴𝐴 < π) → ((cos‘𝐴) < 0 ∧ 0 < (sin‘𝐴))))
51503impib 1108 . . 3 ((𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π) → ((cos‘𝐴) < 0 ∧ 0 < (sin‘𝐴)))
5251ancomd 453 . 2 ((𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))
537, 52sylbi 207 1 (𝐴 ∈ ((π / 2)(,)π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145   class class class wbr 4786  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138   + caddc 10141  *cxr 10275   < clt 10276  cmin 10468  -cneg 10469   / cdiv 10886  2c2 11272  (,)cioo 12380  sincsin 15000  cosccos 15001  πcpi 15003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851
This theorem is referenced by:  sincosq3sgn  24473  coseq00topi  24475
  Copyright terms: Public domain W3C validator