MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincosq2sgn Structured version   Visualization version   GIF version

Theorem sincosq2sgn 25012
Description: The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq2sgn (𝐴 ∈ ((π / 2)(,)π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))

Proof of Theorem sincosq2sgn
StepHypRef Expression
1 halfpire 24977 . . 3 (π / 2) ∈ ℝ
2 pire 24971 . . 3 π ∈ ℝ
3 rexr 10675 . . . 4 ((π / 2) ∈ ℝ → (π / 2) ∈ ℝ*)
4 rexr 10675 . . . 4 (π ∈ ℝ → π ∈ ℝ*)
5 elioo2 12767 . . . 4 (((π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π)))
63, 4, 5syl2an 595 . . 3 (((π / 2) ∈ ℝ ∧ π ∈ ℝ) → (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π)))
71, 2, 6mp2an 688 . 2 (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π))
8 resubcl 10938 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 − (π / 2)) ∈ ℝ)
91, 8mpan2 687 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℝ)
10 0xr 10676 . . . . . . . . . 10 0 ∈ ℝ*
111rexri 10687 . . . . . . . . . 10 (π / 2) ∈ ℝ*
12 elioo2 12767 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((𝐴 − (π / 2)) ∈ (0(,)(π / 2)) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ 0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2))))
1310, 11, 12mp2an 688 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ (0(,)(π / 2)) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ 0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)))
14 sincosq1sgn 25011 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ (0(,)(π / 2)) → (0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2)))))
1513, 14sylbir 236 . . . . . . . 8 (((𝐴 − (π / 2)) ∈ ℝ ∧ 0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)) → (0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2)))))
169, 15syl3an1 1155 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)) → (0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2)))))
17163expib 1114 . . . . . 6 (𝐴 ∈ ℝ → ((0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)) → (0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2))))))
18 0re 10631 . . . . . . . . 9 0 ∈ ℝ
19 ltsub13 11109 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (0 < (𝐴 − (π / 2)) ↔ (π / 2) < (𝐴 − 0)))
2018, 1, 19mp3an13 1443 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < (𝐴 − (π / 2)) ↔ (π / 2) < (𝐴 − 0)))
21 recn 10615 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2221subid1d 10974 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − 0) = 𝐴)
2322breq2d 5069 . . . . . . . 8 (𝐴 ∈ ℝ → ((π / 2) < (𝐴 − 0) ↔ (π / 2) < 𝐴))
2420, 23bitrd 280 . . . . . . 7 (𝐴 ∈ ℝ → (0 < (𝐴 − (π / 2)) ↔ (π / 2) < 𝐴))
25 ltsubadd 11098 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((𝐴 − (π / 2)) < (π / 2) ↔ 𝐴 < ((π / 2) + (π / 2))))
261, 1, 25mp3an23 1444 . . . . . . . 8 (𝐴 ∈ ℝ → ((𝐴 − (π / 2)) < (π / 2) ↔ 𝐴 < ((π / 2) + (π / 2))))
27 pidiv2halves 24980 . . . . . . . . 9 ((π / 2) + (π / 2)) = π
2827breq2i 5065 . . . . . . . 8 (𝐴 < ((π / 2) + (π / 2)) ↔ 𝐴 < π)
2926, 28syl6bb 288 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 − (π / 2)) < (π / 2) ↔ 𝐴 < π))
3024, 29anbi12d 630 . . . . . 6 (𝐴 ∈ ℝ → ((0 < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (π / 2)) ↔ ((π / 2) < 𝐴𝐴 < π)))
319resincld 15484 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘(𝐴 − (π / 2))) ∈ ℝ)
3231lt0neg2d 11198 . . . . . . 7 (𝐴 ∈ ℝ → (0 < (sin‘(𝐴 − (π / 2))) ↔ -(sin‘(𝐴 − (π / 2))) < 0))
3332anbi1d 629 . . . . . 6 (𝐴 ∈ ℝ → ((0 < (sin‘(𝐴 − (π / 2))) ∧ 0 < (cos‘(𝐴 − (π / 2)))) ↔ (-(sin‘(𝐴 − (π / 2))) < 0 ∧ 0 < (cos‘(𝐴 − (π / 2))))))
3417, 30, 333imtr3d 294 . . . . 5 (𝐴 ∈ ℝ → (((π / 2) < 𝐴𝐴 < π) → (-(sin‘(𝐴 − (π / 2))) < 0 ∧ 0 < (cos‘(𝐴 − (π / 2))))))
351recni 10643 . . . . . . . . . 10 (π / 2) ∈ ℂ
36 pncan3 10882 . . . . . . . . . 10 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
3735, 21, 36sylancr 587 . . . . . . . . 9 (𝐴 ∈ ℝ → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
3837fveq2d 6667 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘𝐴))
399recnd 10657 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℂ)
40 coshalfpip 25007 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ℂ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
4139, 40syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
4238, 41eqtr3d 2855 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘𝐴) = -(sin‘(𝐴 − (π / 2))))
4342breq1d 5067 . . . . . 6 (𝐴 ∈ ℝ → ((cos‘𝐴) < 0 ↔ -(sin‘(𝐴 − (π / 2))) < 0))
4437fveq2d 6667 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (sin‘𝐴))
45 sinhalfpip 25005 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ℂ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
4639, 45syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
4744, 46eqtr3d 2855 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘𝐴) = (cos‘(𝐴 − (π / 2))))
4847breq2d 5069 . . . . . 6 (𝐴 ∈ ℝ → (0 < (sin‘𝐴) ↔ 0 < (cos‘(𝐴 − (π / 2)))))
4943, 48anbi12d 630 . . . . 5 (𝐴 ∈ ℝ → (((cos‘𝐴) < 0 ∧ 0 < (sin‘𝐴)) ↔ (-(sin‘(𝐴 − (π / 2))) < 0 ∧ 0 < (cos‘(𝐴 − (π / 2))))))
5034, 49sylibrd 260 . . . 4 (𝐴 ∈ ℝ → (((π / 2) < 𝐴𝐴 < π) → ((cos‘𝐴) < 0 ∧ 0 < (sin‘𝐴))))
51503impib 1108 . . 3 ((𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π) → ((cos‘𝐴) < 0 ∧ 0 < (sin‘𝐴)))
5251ancomd 462 . 2 ((𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))
537, 52sylbi 218 1 (𝐴 ∈ ((π / 2)(,)π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105   class class class wbr 5057  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525   + caddc 10528  *cxr 10662   < clt 10663  cmin 10858  -cneg 10859   / cdiv 11285  2c2 11680  (,)cioo 12726  sincsin 15405  cosccos 15406  πcpi 15408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-pi 15414  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392
This theorem is referenced by:  sincosq3sgn  25013  coseq00topi  25015
  Copyright terms: Public domain W3C validator