Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihlspsnat Structured version   Visualization version   GIF version

Theorem dihlspsnat 41357
Description: The inverse isomorphism H of the span of a singleton is a Hilbert lattice atom. (Contributed by NM, 27-Apr-2014.)
Hypotheses
Ref Expression
dihlspsnat.a 𝐴 = (Atoms‘𝐾)
dihlspsnat.h 𝐻 = (LHyp‘𝐾)
dihlspsnat.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihlspsnat.v 𝑉 = (Base‘𝑈)
dihlspsnat.o 0 = (0g𝑈)
dihlspsnat.n 𝑁 = (LSpan‘𝑈)
dihlspsnat.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihlspsnat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) → (𝐼‘(𝑁‘{𝑋})) ∈ 𝐴)

Proof of Theorem dihlspsnat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2 dihlspsnat.h . . . . . 6 𝐻 = (LHyp‘𝐾)
3 dihlspsnat.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
4 dihlspsnat.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2736 . . . . . 6 (LSubSp‘𝑈) = (LSubSp‘𝑈)
61, 2, 3, 4, 5dihf11 41291 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:(Base‘𝐾)–1-1→(LSubSp‘𝑈))
763ad2ant1 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) → 𝐼:(Base‘𝐾)–1-1→(LSubSp‘𝑈))
8 f1f1orn 6834 . . . 4 (𝐼:(Base‘𝐾)–1-1→(LSubSp‘𝑈) → 𝐼:(Base‘𝐾)–1-1-onto→ran 𝐼)
97, 8syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) → 𝐼:(Base‘𝐾)–1-1-onto→ran 𝐼)
10 dihlspsnat.v . . . . 5 𝑉 = (Base‘𝑈)
11 dihlspsnat.n . . . . 5 𝑁 = (LSpan‘𝑈)
122, 4, 10, 11, 3dihlsprn 41355 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ ran 𝐼)
13123adant3 1132 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) ∈ ran 𝐼)
14 f1ocnvdm 7283 . . 3 ((𝐼:(Base‘𝐾)–1-1-onto→ran 𝐼 ∧ (𝑁‘{𝑋}) ∈ ran 𝐼) → (𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾))
159, 13, 14syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) → (𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾))
16 fveq2 6881 . . . . 5 ((𝐼‘(𝑁‘{𝑋})) = (0.‘𝐾) → (𝐼‘(𝐼‘(𝑁‘{𝑋}))) = (𝐼‘(0.‘𝐾)))
172, 3dihcnvid2 41297 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑁‘{𝑋}) ∈ ran 𝐼) → (𝐼‘(𝐼‘(𝑁‘{𝑋}))) = (𝑁‘{𝑋}))
1812, 17syldan 591 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (𝐼‘(𝐼‘(𝑁‘{𝑋}))) = (𝑁‘{𝑋}))
19 eqid 2736 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
20 dihlspsnat.o . . . . . . . . 9 0 = (0g𝑈)
2119, 2, 3, 4, 20dih0 41304 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼‘(0.‘𝐾)) = { 0 })
2221adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (𝐼‘(0.‘𝐾)) = { 0 })
2318, 22eqeq12d 2752 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((𝐼‘(𝐼‘(𝑁‘{𝑋}))) = (𝐼‘(0.‘𝐾)) ↔ (𝑁‘{𝑋}) = { 0 }))
24 id 22 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
252, 4, 24dvhlmod 41134 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
2610, 20, 11lspsneq0 20974 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
2725, 26sylan 580 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
2823, 27bitrd 279 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((𝐼‘(𝐼‘(𝑁‘{𝑋}))) = (𝐼‘(0.‘𝐾)) ↔ 𝑋 = 0 ))
2916, 28imbitrid 244 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((𝐼‘(𝑁‘{𝑋})) = (0.‘𝐾) → 𝑋 = 0 ))
3029necon3d 2954 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (𝑋0 → (𝐼‘(𝑁‘{𝑋})) ≠ (0.‘𝐾)))
31303impia 1117 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) → (𝐼‘(𝑁‘{𝑋})) ≠ (0.‘𝐾))
32 simpll1 1213 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼𝑥) ⊆ (𝑁‘{𝑋})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
332, 4, 32dvhlvec 41133 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼𝑥) ⊆ (𝑁‘{𝑋})) → 𝑈 ∈ LVec)
34 simplr 768 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼𝑥) ⊆ (𝑁‘{𝑋})) → 𝑥 ∈ (Base‘𝐾))
351, 2, 3, 4, 5dihlss 41274 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐼𝑥) ∈ (LSubSp‘𝑈))
3632, 34, 35syl2anc 584 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼𝑥) ⊆ (𝑁‘{𝑋})) → (𝐼𝑥) ∈ (LSubSp‘𝑈))
37 simpll2 1214 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼𝑥) ⊆ (𝑁‘{𝑋})) → 𝑋𝑉)
38 simpr 484 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼𝑥) ⊆ (𝑁‘{𝑋})) → (𝐼𝑥) ⊆ (𝑁‘{𝑋}))
3910, 20, 5, 11lspsnat 21111 . . . . . 6 (((𝑈 ∈ LVec ∧ (𝐼𝑥) ∈ (LSubSp‘𝑈) ∧ 𝑋𝑉) ∧ (𝐼𝑥) ⊆ (𝑁‘{𝑋})) → ((𝐼𝑥) = (𝑁‘{𝑋}) ∨ (𝐼𝑥) = { 0 }))
4033, 36, 37, 38, 39syl31anc 1375 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼𝑥) ⊆ (𝑁‘{𝑋})) → ((𝐼𝑥) = (𝑁‘{𝑋}) ∨ (𝐼𝑥) = { 0 }))
4140ex 412 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼𝑥) ⊆ (𝑁‘{𝑋}) → ((𝐼𝑥) = (𝑁‘{𝑋}) ∨ (𝐼𝑥) = { 0 })))
42 simp1 1136 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4342, 13, 17syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) → (𝐼‘(𝐼‘(𝑁‘{𝑋}))) = (𝑁‘{𝑋}))
4443adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐼‘(𝐼‘(𝑁‘{𝑋}))) = (𝑁‘{𝑋}))
4544sseq2d 3996 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼𝑥) ⊆ (𝐼‘(𝐼‘(𝑁‘{𝑋}))) ↔ (𝐼𝑥) ⊆ (𝑁‘{𝑋})))
46 simpl1 1192 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
47 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾))
4815adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾))
49 eqid 2736 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
501, 49, 2, 3dihord 41288 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ (Base‘𝐾) ∧ (𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾)) → ((𝐼𝑥) ⊆ (𝐼‘(𝐼‘(𝑁‘{𝑋}))) ↔ 𝑥(le‘𝐾)(𝐼‘(𝑁‘{𝑋}))))
5146, 47, 48, 50syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼𝑥) ⊆ (𝐼‘(𝐼‘(𝑁‘{𝑋}))) ↔ 𝑥(le‘𝐾)(𝐼‘(𝑁‘{𝑋}))))
5245, 51bitr3d 281 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼𝑥) ⊆ (𝑁‘{𝑋}) ↔ 𝑥(le‘𝐾)(𝐼‘(𝑁‘{𝑋}))))
5344eqeq2d 2747 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼𝑥) = (𝐼‘(𝐼‘(𝑁‘{𝑋}))) ↔ (𝐼𝑥) = (𝑁‘{𝑋})))
541, 2, 3dih11 41289 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ (Base‘𝐾) ∧ (𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾)) → ((𝐼𝑥) = (𝐼‘(𝐼‘(𝑁‘{𝑋}))) ↔ 𝑥 = (𝐼‘(𝑁‘{𝑋}))))
5546, 47, 48, 54syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼𝑥) = (𝐼‘(𝐼‘(𝑁‘{𝑋}))) ↔ 𝑥 = (𝐼‘(𝑁‘{𝑋}))))
5653, 55bitr3d 281 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼𝑥) = (𝑁‘{𝑋}) ↔ 𝑥 = (𝐼‘(𝑁‘{𝑋}))))
5746, 21syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐼‘(0.‘𝐾)) = { 0 })
5857eqeq2d 2747 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼𝑥) = (𝐼‘(0.‘𝐾)) ↔ (𝐼𝑥) = { 0 }))
59 simpl1l 1225 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ HL)
60 hlop 39385 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
611, 19op0cl 39207 . . . . . . . 8 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
6259, 60, 613syl 18 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (0.‘𝐾) ∈ (Base‘𝐾))
631, 2, 3dih11 41289 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ (Base‘𝐾) ∧ (0.‘𝐾) ∈ (Base‘𝐾)) → ((𝐼𝑥) = (𝐼‘(0.‘𝐾)) ↔ 𝑥 = (0.‘𝐾)))
6446, 47, 62, 63syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼𝑥) = (𝐼‘(0.‘𝐾)) ↔ 𝑥 = (0.‘𝐾)))
6558, 64bitr3d 281 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼𝑥) = { 0 } ↔ 𝑥 = (0.‘𝐾)))
6656, 65orbi12d 918 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (((𝐼𝑥) = (𝑁‘{𝑋}) ∨ (𝐼𝑥) = { 0 }) ↔ (𝑥 = (𝐼‘(𝑁‘{𝑋})) ∨ 𝑥 = (0.‘𝐾))))
6741, 52, 663imtr3d 293 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥(le‘𝐾)(𝐼‘(𝑁‘{𝑋})) → (𝑥 = (𝐼‘(𝑁‘{𝑋})) ∨ 𝑥 = (0.‘𝐾))))
6867ralrimiva 3133 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) → ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)(𝐼‘(𝑁‘{𝑋})) → (𝑥 = (𝐼‘(𝑁‘{𝑋})) ∨ 𝑥 = (0.‘𝐾))))
69 simp1l 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) → 𝐾 ∈ HL)
70 hlatl 39383 . . 3 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
71 dihlspsnat.a . . . 4 𝐴 = (Atoms‘𝐾)
721, 49, 19, 71isat3 39330 . . 3 (𝐾 ∈ AtLat → ((𝐼‘(𝑁‘{𝑋})) ∈ 𝐴 ↔ ((𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾) ∧ (𝐼‘(𝑁‘{𝑋})) ≠ (0.‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)(𝐼‘(𝑁‘{𝑋})) → (𝑥 = (𝐼‘(𝑁‘{𝑋})) ∨ 𝑥 = (0.‘𝐾))))))
7369, 70, 723syl 18 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) → ((𝐼‘(𝑁‘{𝑋})) ∈ 𝐴 ↔ ((𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾) ∧ (𝐼‘(𝑁‘{𝑋})) ≠ (0.‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)(𝐼‘(𝑁‘{𝑋})) → (𝑥 = (𝐼‘(𝑁‘{𝑋})) ∨ 𝑥 = (0.‘𝐾))))))
7415, 31, 68, 73mpbir3and 1343 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) → (𝐼‘(𝑁‘{𝑋})) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wss 3931  {csn 4606   class class class wbr 5124  ccnv 5658  ran crn 5660  1-1wf1 6533  1-1-ontowf1o 6535  cfv 6536  Basecbs 17233  lecple 17283  0gc0g 17458  0.cp0 18438  LModclmod 20822  LSubSpclss 20893  LSpanclspn 20933  LVecclvec 21065  OPcops 39195  Atomscatm 39286  AtLatcal 39287  HLchlt 39373  LHypclh 40008  DVecHcdvh 41102  DIsoHcdih 41252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-riotaBAD 38976
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-undef 8277  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-0g 17460  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cntz 19305  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-drng 20696  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lvec 21066  df-lsatoms 38999  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-llines 39522  df-lplanes 39523  df-lvols 39524  df-lines 39525  df-psubsp 39527  df-pmap 39528  df-padd 39820  df-lhyp 40012  df-laut 40013  df-ldil 40128  df-ltrn 40129  df-trl 40183  df-tendo 40779  df-edring 40781  df-disoa 41053  df-dvech 41103  df-dib 41163  df-dic 41197  df-dih 41253
This theorem is referenced by:  dihlatat  41361  djhcvat42  41439  dihprrnlem1N  41448  dihprrnlem2  41449
  Copyright terms: Public domain W3C validator