Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
2 | | dihlspsnat.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
3 | | dihlspsnat.i |
. . . . . 6
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
4 | | dihlspsnat.u |
. . . . . 6
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
5 | | eqid 2738 |
. . . . . 6
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
6 | 1, 2, 3, 4, 5 | dihf11 39281 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:(Base‘𝐾)–1-1→(LSubSp‘𝑈)) |
7 | 6 | 3ad2ant1 1132 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝐼:(Base‘𝐾)–1-1→(LSubSp‘𝑈)) |
8 | | f1f1orn 6727 |
. . . 4
⊢ (𝐼:(Base‘𝐾)–1-1→(LSubSp‘𝑈) → 𝐼:(Base‘𝐾)–1-1-onto→ran
𝐼) |
9 | 7, 8 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝐼:(Base‘𝐾)–1-1-onto→ran
𝐼) |
10 | | dihlspsnat.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑈) |
11 | | dihlspsnat.n |
. . . . 5
⊢ 𝑁 = (LSpan‘𝑈) |
12 | 2, 4, 10, 11, 3 | dihlsprn 39345 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ ran 𝐼) |
13 | 12 | 3adant3 1131 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (𝑁‘{𝑋}) ∈ ran 𝐼) |
14 | | f1ocnvdm 7157 |
. . 3
⊢ ((𝐼:(Base‘𝐾)–1-1-onto→ran
𝐼 ∧ (𝑁‘{𝑋}) ∈ ran 𝐼) → (◡𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾)) |
15 | 9, 13, 14 | syl2anc 584 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (◡𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾)) |
16 | | fveq2 6774 |
. . . . 5
⊢ ((◡𝐼‘(𝑁‘{𝑋})) = (0.‘𝐾) → (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) = (𝐼‘(0.‘𝐾))) |
17 | 2, 3 | dihcnvid2 39287 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘{𝑋}) ∈ ran 𝐼) → (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) = (𝑁‘{𝑋})) |
18 | 12, 17 | syldan 591 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) = (𝑁‘{𝑋})) |
19 | | eqid 2738 |
. . . . . . . . 9
⊢
(0.‘𝐾) =
(0.‘𝐾) |
20 | | dihlspsnat.o |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑈) |
21 | 19, 2, 3, 4, 20 | dih0 39294 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘(0.‘𝐾)) = { 0 }) |
22 | 21 | adantr 481 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → (𝐼‘(0.‘𝐾)) = { 0 }) |
23 | 18, 22 | eqeq12d 2754 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → ((𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) = (𝐼‘(0.‘𝐾)) ↔ (𝑁‘{𝑋}) = { 0 })) |
24 | | id 22 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
25 | 2, 4, 24 | dvhlmod 39124 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ LMod) |
26 | 10, 20, 11 | lspsneq0 20274 |
. . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
27 | 25, 26 | sylan 580 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
28 | 23, 27 | bitrd 278 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → ((𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) = (𝐼‘(0.‘𝐾)) ↔ 𝑋 = 0 )) |
29 | 16, 28 | syl5ib 243 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → ((◡𝐼‘(𝑁‘{𝑋})) = (0.‘𝐾) → 𝑋 = 0 )) |
30 | 29 | necon3d 2964 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → (𝑋 ≠ 0 → (◡𝐼‘(𝑁‘{𝑋})) ≠ (0.‘𝐾))) |
31 | 30 | 3impia 1116 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (◡𝐼‘(𝑁‘{𝑋})) ≠ (0.‘𝐾)) |
32 | | simpll1 1211 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
33 | 2, 4, 32 | dvhlvec 39123 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) → 𝑈 ∈ LVec) |
34 | | simplr 766 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) → 𝑥 ∈ (Base‘𝐾)) |
35 | 1, 2, 3, 4, 5 | dihlss 39264 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐼‘𝑥) ∈ (LSubSp‘𝑈)) |
36 | 32, 34, 35 | syl2anc 584 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) → (𝐼‘𝑥) ∈ (LSubSp‘𝑈)) |
37 | | simpll2 1212 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) → 𝑋 ∈ 𝑉) |
38 | | simpr 485 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) → (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) |
39 | 10, 20, 5, 11 | lspsnat 20407 |
. . . . . 6
⊢ (((𝑈 ∈ LVec ∧ (𝐼‘𝑥) ∈ (LSubSp‘𝑈) ∧ 𝑋 ∈ 𝑉) ∧ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) → ((𝐼‘𝑥) = (𝑁‘{𝑋}) ∨ (𝐼‘𝑥) = { 0 })) |
40 | 33, 36, 37, 38, 39 | syl31anc 1372 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) → ((𝐼‘𝑥) = (𝑁‘{𝑋}) ∨ (𝐼‘𝑥) = { 0 })) |
41 | 40 | ex 413 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) ⊆ (𝑁‘{𝑋}) → ((𝐼‘𝑥) = (𝑁‘{𝑋}) ∨ (𝐼‘𝑥) = { 0 }))) |
42 | | simp1 1135 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
43 | 42, 13, 17 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) = (𝑁‘{𝑋})) |
44 | 43 | adantr 481 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) = (𝑁‘{𝑋})) |
45 | 44 | sseq2d 3953 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) ⊆ (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) ↔ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋}))) |
46 | | simpl1 1190 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
47 | | simpr 485 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾)) |
48 | 15 | adantr 481 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (◡𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾)) |
49 | | eqid 2738 |
. . . . . . 7
⊢
(le‘𝐾) =
(le‘𝐾) |
50 | 1, 49, 2, 3 | dihord 39278 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ (Base‘𝐾) ∧ (◡𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾)) → ((𝐼‘𝑥) ⊆ (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) ↔ 𝑥(le‘𝐾)(◡𝐼‘(𝑁‘{𝑋})))) |
51 | 46, 47, 48, 50 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) ⊆ (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) ↔ 𝑥(le‘𝐾)(◡𝐼‘(𝑁‘{𝑋})))) |
52 | 45, 51 | bitr3d 280 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) ⊆ (𝑁‘{𝑋}) ↔ 𝑥(le‘𝐾)(◡𝐼‘(𝑁‘{𝑋})))) |
53 | 44 | eqeq2d 2749 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) = (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) ↔ (𝐼‘𝑥) = (𝑁‘{𝑋}))) |
54 | 1, 2, 3 | dih11 39279 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ (Base‘𝐾) ∧ (◡𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾)) → ((𝐼‘𝑥) = (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) ↔ 𝑥 = (◡𝐼‘(𝑁‘{𝑋})))) |
55 | 46, 47, 48, 54 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) = (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) ↔ 𝑥 = (◡𝐼‘(𝑁‘{𝑋})))) |
56 | 53, 55 | bitr3d 280 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) = (𝑁‘{𝑋}) ↔ 𝑥 = (◡𝐼‘(𝑁‘{𝑋})))) |
57 | 46, 21 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐼‘(0.‘𝐾)) = { 0 }) |
58 | 57 | eqeq2d 2749 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) = (𝐼‘(0.‘𝐾)) ↔ (𝐼‘𝑥) = { 0 })) |
59 | | simpl1l 1223 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ HL) |
60 | | hlop 37376 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
61 | 1, 19 | op0cl 37198 |
. . . . . . . 8
⊢ (𝐾 ∈ OP →
(0.‘𝐾) ∈
(Base‘𝐾)) |
62 | 59, 60, 61 | 3syl 18 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (0.‘𝐾) ∈ (Base‘𝐾)) |
63 | 1, 2, 3 | dih11 39279 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ (Base‘𝐾) ∧ (0.‘𝐾) ∈ (Base‘𝐾)) → ((𝐼‘𝑥) = (𝐼‘(0.‘𝐾)) ↔ 𝑥 = (0.‘𝐾))) |
64 | 46, 47, 62, 63 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) = (𝐼‘(0.‘𝐾)) ↔ 𝑥 = (0.‘𝐾))) |
65 | 58, 64 | bitr3d 280 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) = { 0 } ↔ 𝑥 = (0.‘𝐾))) |
66 | 56, 65 | orbi12d 916 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (((𝐼‘𝑥) = (𝑁‘{𝑋}) ∨ (𝐼‘𝑥) = { 0 }) ↔ (𝑥 = (◡𝐼‘(𝑁‘{𝑋})) ∨ 𝑥 = (0.‘𝐾)))) |
67 | 41, 52, 66 | 3imtr3d 293 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥(le‘𝐾)(◡𝐼‘(𝑁‘{𝑋})) → (𝑥 = (◡𝐼‘(𝑁‘{𝑋})) ∨ 𝑥 = (0.‘𝐾)))) |
68 | 67 | ralrimiva 3103 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)(◡𝐼‘(𝑁‘{𝑋})) → (𝑥 = (◡𝐼‘(𝑁‘{𝑋})) ∨ 𝑥 = (0.‘𝐾)))) |
69 | | simp1l 1196 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝐾 ∈ HL) |
70 | | hlatl 37374 |
. . 3
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
71 | | dihlspsnat.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
72 | 1, 49, 19, 71 | isat3 37321 |
. . 3
⊢ (𝐾 ∈ AtLat → ((◡𝐼‘(𝑁‘{𝑋})) ∈ 𝐴 ↔ ((◡𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾) ∧ (◡𝐼‘(𝑁‘{𝑋})) ≠ (0.‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)(◡𝐼‘(𝑁‘{𝑋})) → (𝑥 = (◡𝐼‘(𝑁‘{𝑋})) ∨ 𝑥 = (0.‘𝐾)))))) |
73 | 69, 70, 72 | 3syl 18 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ((◡𝐼‘(𝑁‘{𝑋})) ∈ 𝐴 ↔ ((◡𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾) ∧ (◡𝐼‘(𝑁‘{𝑋})) ≠ (0.‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)(◡𝐼‘(𝑁‘{𝑋})) → (𝑥 = (◡𝐼‘(𝑁‘{𝑋})) ∨ 𝑥 = (0.‘𝐾)))))) |
74 | 15, 31, 68, 73 | mpbir3and 1341 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (◡𝐼‘(𝑁‘{𝑋})) ∈ 𝐴) |