| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 2 |  | dihlspsnat.h | . . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) | 
| 3 |  | dihlspsnat.i | . . . . . 6
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | 
| 4 |  | dihlspsnat.u | . . . . . 6
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 5 |  | eqid 2736 | . . . . . 6
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) | 
| 6 | 1, 2, 3, 4, 5 | dihf11 41270 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:(Base‘𝐾)–1-1→(LSubSp‘𝑈)) | 
| 7 | 6 | 3ad2ant1 1133 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝐼:(Base‘𝐾)–1-1→(LSubSp‘𝑈)) | 
| 8 |  | f1f1orn 6858 | . . . 4
⊢ (𝐼:(Base‘𝐾)–1-1→(LSubSp‘𝑈) → 𝐼:(Base‘𝐾)–1-1-onto→ran
𝐼) | 
| 9 | 7, 8 | syl 17 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝐼:(Base‘𝐾)–1-1-onto→ran
𝐼) | 
| 10 |  | dihlspsnat.v | . . . . 5
⊢ 𝑉 = (Base‘𝑈) | 
| 11 |  | dihlspsnat.n | . . . . 5
⊢ 𝑁 = (LSpan‘𝑈) | 
| 12 | 2, 4, 10, 11, 3 | dihlsprn 41334 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ ran 𝐼) | 
| 13 | 12 | 3adant3 1132 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (𝑁‘{𝑋}) ∈ ran 𝐼) | 
| 14 |  | f1ocnvdm 7306 | . . 3
⊢ ((𝐼:(Base‘𝐾)–1-1-onto→ran
𝐼 ∧ (𝑁‘{𝑋}) ∈ ran 𝐼) → (◡𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾)) | 
| 15 | 9, 13, 14 | syl2anc 584 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (◡𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾)) | 
| 16 |  | fveq2 6905 | . . . . 5
⊢ ((◡𝐼‘(𝑁‘{𝑋})) = (0.‘𝐾) → (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) = (𝐼‘(0.‘𝐾))) | 
| 17 | 2, 3 | dihcnvid2 41276 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘{𝑋}) ∈ ran 𝐼) → (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) = (𝑁‘{𝑋})) | 
| 18 | 12, 17 | syldan 591 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) = (𝑁‘{𝑋})) | 
| 19 |  | eqid 2736 | . . . . . . . . 9
⊢
(0.‘𝐾) =
(0.‘𝐾) | 
| 20 |  | dihlspsnat.o | . . . . . . . . 9
⊢  0 =
(0g‘𝑈) | 
| 21 | 19, 2, 3, 4, 20 | dih0 41283 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘(0.‘𝐾)) = { 0 }) | 
| 22 | 21 | adantr 480 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → (𝐼‘(0.‘𝐾)) = { 0 }) | 
| 23 | 18, 22 | eqeq12d 2752 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → ((𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) = (𝐼‘(0.‘𝐾)) ↔ (𝑁‘{𝑋}) = { 0 })) | 
| 24 |  | id 22 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 25 | 2, 4, 24 | dvhlmod 41113 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ LMod) | 
| 26 | 10, 20, 11 | lspsneq0 21011 | . . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) | 
| 27 | 25, 26 | sylan 580 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) | 
| 28 | 23, 27 | bitrd 279 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → ((𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) = (𝐼‘(0.‘𝐾)) ↔ 𝑋 = 0 )) | 
| 29 | 16, 28 | imbitrid 244 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → ((◡𝐼‘(𝑁‘{𝑋})) = (0.‘𝐾) → 𝑋 = 0 )) | 
| 30 | 29 | necon3d 2960 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) → (𝑋 ≠ 0 → (◡𝐼‘(𝑁‘{𝑋})) ≠ (0.‘𝐾))) | 
| 31 | 30 | 3impia 1117 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (◡𝐼‘(𝑁‘{𝑋})) ≠ (0.‘𝐾)) | 
| 32 |  | simpll1 1212 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 33 | 2, 4, 32 | dvhlvec 41112 | . . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) → 𝑈 ∈ LVec) | 
| 34 |  | simplr 768 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) → 𝑥 ∈ (Base‘𝐾)) | 
| 35 | 1, 2, 3, 4, 5 | dihlss 41253 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐼‘𝑥) ∈ (LSubSp‘𝑈)) | 
| 36 | 32, 34, 35 | syl2anc 584 | . . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) → (𝐼‘𝑥) ∈ (LSubSp‘𝑈)) | 
| 37 |  | simpll2 1213 | . . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) → 𝑋 ∈ 𝑉) | 
| 38 |  | simpr 484 | . . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) → (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) | 
| 39 | 10, 20, 5, 11 | lspsnat 21148 | . . . . . 6
⊢ (((𝑈 ∈ LVec ∧ (𝐼‘𝑥) ∈ (LSubSp‘𝑈) ∧ 𝑋 ∈ 𝑉) ∧ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) → ((𝐼‘𝑥) = (𝑁‘{𝑋}) ∨ (𝐼‘𝑥) = { 0 })) | 
| 40 | 33, 36, 37, 38, 39 | syl31anc 1374 | . . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋})) → ((𝐼‘𝑥) = (𝑁‘{𝑋}) ∨ (𝐼‘𝑥) = { 0 })) | 
| 41 | 40 | ex 412 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) ⊆ (𝑁‘{𝑋}) → ((𝐼‘𝑥) = (𝑁‘{𝑋}) ∨ (𝐼‘𝑥) = { 0 }))) | 
| 42 |  | simp1 1136 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 43 | 42, 13, 17 | syl2anc 584 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) = (𝑁‘{𝑋})) | 
| 44 | 43 | adantr 480 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) = (𝑁‘{𝑋})) | 
| 45 | 44 | sseq2d 4015 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) ⊆ (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) ↔ (𝐼‘𝑥) ⊆ (𝑁‘{𝑋}))) | 
| 46 |  | simpl1 1191 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 47 |  | simpr 484 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾)) | 
| 48 | 15 | adantr 480 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (◡𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾)) | 
| 49 |  | eqid 2736 | . . . . . . 7
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 50 | 1, 49, 2, 3 | dihord 41267 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ (Base‘𝐾) ∧ (◡𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾)) → ((𝐼‘𝑥) ⊆ (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) ↔ 𝑥(le‘𝐾)(◡𝐼‘(𝑁‘{𝑋})))) | 
| 51 | 46, 47, 48, 50 | syl3anc 1372 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) ⊆ (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) ↔ 𝑥(le‘𝐾)(◡𝐼‘(𝑁‘{𝑋})))) | 
| 52 | 45, 51 | bitr3d 281 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) ⊆ (𝑁‘{𝑋}) ↔ 𝑥(le‘𝐾)(◡𝐼‘(𝑁‘{𝑋})))) | 
| 53 | 44 | eqeq2d 2747 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) = (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) ↔ (𝐼‘𝑥) = (𝑁‘{𝑋}))) | 
| 54 | 1, 2, 3 | dih11 41268 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ (Base‘𝐾) ∧ (◡𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾)) → ((𝐼‘𝑥) = (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) ↔ 𝑥 = (◡𝐼‘(𝑁‘{𝑋})))) | 
| 55 | 46, 47, 48, 54 | syl3anc 1372 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) = (𝐼‘(◡𝐼‘(𝑁‘{𝑋}))) ↔ 𝑥 = (◡𝐼‘(𝑁‘{𝑋})))) | 
| 56 | 53, 55 | bitr3d 281 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) = (𝑁‘{𝑋}) ↔ 𝑥 = (◡𝐼‘(𝑁‘{𝑋})))) | 
| 57 | 46, 21 | syl 17 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐼‘(0.‘𝐾)) = { 0 }) | 
| 58 | 57 | eqeq2d 2747 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) = (𝐼‘(0.‘𝐾)) ↔ (𝐼‘𝑥) = { 0 })) | 
| 59 |  | simpl1l 1224 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ HL) | 
| 60 |  | hlop 39364 | . . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | 
| 61 | 1, 19 | op0cl 39186 | . . . . . . . 8
⊢ (𝐾 ∈ OP →
(0.‘𝐾) ∈
(Base‘𝐾)) | 
| 62 | 59, 60, 61 | 3syl 18 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (0.‘𝐾) ∈ (Base‘𝐾)) | 
| 63 | 1, 2, 3 | dih11 41268 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ (Base‘𝐾) ∧ (0.‘𝐾) ∈ (Base‘𝐾)) → ((𝐼‘𝑥) = (𝐼‘(0.‘𝐾)) ↔ 𝑥 = (0.‘𝐾))) | 
| 64 | 46, 47, 62, 63 | syl3anc 1372 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) = (𝐼‘(0.‘𝐾)) ↔ 𝑥 = (0.‘𝐾))) | 
| 65 | 58, 64 | bitr3d 281 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐼‘𝑥) = { 0 } ↔ 𝑥 = (0.‘𝐾))) | 
| 66 | 56, 65 | orbi12d 918 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (((𝐼‘𝑥) = (𝑁‘{𝑋}) ∨ (𝐼‘𝑥) = { 0 }) ↔ (𝑥 = (◡𝐼‘(𝑁‘{𝑋})) ∨ 𝑥 = (0.‘𝐾)))) | 
| 67 | 41, 52, 66 | 3imtr3d 293 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥(le‘𝐾)(◡𝐼‘(𝑁‘{𝑋})) → (𝑥 = (◡𝐼‘(𝑁‘{𝑋})) ∨ 𝑥 = (0.‘𝐾)))) | 
| 68 | 67 | ralrimiva 3145 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)(◡𝐼‘(𝑁‘{𝑋})) → (𝑥 = (◡𝐼‘(𝑁‘{𝑋})) ∨ 𝑥 = (0.‘𝐾)))) | 
| 69 |  | simp1l 1197 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝐾 ∈ HL) | 
| 70 |  | hlatl 39362 | . . 3
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | 
| 71 |  | dihlspsnat.a | . . . 4
⊢ 𝐴 = (Atoms‘𝐾) | 
| 72 | 1, 49, 19, 71 | isat3 39309 | . . 3
⊢ (𝐾 ∈ AtLat → ((◡𝐼‘(𝑁‘{𝑋})) ∈ 𝐴 ↔ ((◡𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾) ∧ (◡𝐼‘(𝑁‘{𝑋})) ≠ (0.‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)(◡𝐼‘(𝑁‘{𝑋})) → (𝑥 = (◡𝐼‘(𝑁‘{𝑋})) ∨ 𝑥 = (0.‘𝐾)))))) | 
| 73 | 69, 70, 72 | 3syl 18 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ((◡𝐼‘(𝑁‘{𝑋})) ∈ 𝐴 ↔ ((◡𝐼‘(𝑁‘{𝑋})) ∈ (Base‘𝐾) ∧ (◡𝐼‘(𝑁‘{𝑋})) ≠ (0.‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)(◡𝐼‘(𝑁‘{𝑋})) → (𝑥 = (◡𝐼‘(𝑁‘{𝑋})) ∨ 𝑥 = (0.‘𝐾)))))) | 
| 74 | 15, 31, 68, 73 | mpbir3and 1342 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (◡𝐼‘(𝑁‘{𝑋})) ∈ 𝐴) |