Proof of Theorem argimgt0
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | imcl 15151 | . . . . . 6
⊢ (𝐴 ∈ ℂ →
(ℑ‘𝐴) ∈
ℝ) | 
| 2 |  | gt0ne0 11729 | . . . . . 6
⊢
(((ℑ‘𝐴)
∈ ℝ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0) | 
| 3 | 1, 2 | sylan 580 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘𝐴) ≠
0) | 
| 4 |  | fveq2 6905 | . . . . . . 7
⊢ (𝐴 = 0 → (ℑ‘𝐴) =
(ℑ‘0)) | 
| 5 |  | im0 15193 | . . . . . . 7
⊢
(ℑ‘0) = 0 | 
| 6 | 4, 5 | eqtrdi 2792 | . . . . . 6
⊢ (𝐴 = 0 → (ℑ‘𝐴) = 0) | 
| 7 | 6 | necon3i 2972 | . . . . 5
⊢
((ℑ‘𝐴)
≠ 0 → 𝐴 ≠
0) | 
| 8 | 3, 7 | syl 17 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
𝐴 ≠ 0) | 
| 9 |  | logcl 26611 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈
ℂ) | 
| 10 | 8, 9 | syldan 591 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(log‘𝐴) ∈
ℂ) | 
| 11 | 10 | imcld 15235 | . 2
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ ℝ) | 
| 12 |  | simpr 484 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) → 0
< (ℑ‘𝐴)) | 
| 13 |  | abscl 15318 | . . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
(abs‘𝐴) ∈
ℝ) | 
| 14 | 13 | adantr 480 | . . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(abs‘𝐴) ∈
ℝ) | 
| 15 | 14 | recnd 11290 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(abs‘𝐴) ∈
ℂ) | 
| 16 | 15 | mul01d 11461 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((abs‘𝐴) · 0)
= 0) | 
| 17 |  | simpl 482 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
𝐴 ∈
ℂ) | 
| 18 |  | absrpcl 15328 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈
ℝ+) | 
| 19 | 8, 18 | syldan 591 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(abs‘𝐴) ∈
ℝ+) | 
| 20 | 19 | rpne0d 13083 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(abs‘𝐴) ≠
0) | 
| 21 | 17, 15, 20 | divcld 12044 | . . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(𝐴 / (abs‘𝐴)) ∈
ℂ) | 
| 22 | 14, 21 | immul2d 15268 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴))))) | 
| 23 | 17, 15, 20 | divcan2d 12046 | . . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((abs‘𝐴) ·
(𝐴 / (abs‘𝐴))) = 𝐴) | 
| 24 | 23 | fveq2d 6909 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = (ℑ‘𝐴)) | 
| 25 | 22, 24 | eqtr3d 2778 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((abs‘𝐴) ·
(ℑ‘(𝐴 /
(abs‘𝐴)))) =
(ℑ‘𝐴)) | 
| 26 | 12, 16, 25 | 3brtr4d 5174 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((abs‘𝐴) · 0)
< ((abs‘𝐴)
· (ℑ‘(𝐴
/ (abs‘𝐴))))) | 
| 27 |  | 0re 11264 | . . . . . . . . 9
⊢ 0 ∈
ℝ | 
| 28 | 27 | a1i 11 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) → 0
∈ ℝ) | 
| 29 | 21 | imcld 15235 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(𝐴 /
(abs‘𝐴))) ∈
ℝ) | 
| 30 | 28, 29, 19 | ltmul2d 13120 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(0 < (ℑ‘(𝐴 /
(abs‘𝐴))) ↔
((abs‘𝐴) · 0)
< ((abs‘𝐴)
· (ℑ‘(𝐴
/ (abs‘𝐴)))))) | 
| 31 | 26, 30 | mpbird 257 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) → 0
< (ℑ‘(𝐴 /
(abs‘𝐴)))) | 
| 32 |  | efiarg 26650 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i
· (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴))) | 
| 33 | 8, 32 | syldan 591 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴))) | 
| 34 | 33 | fveq2d 6909 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))) = (ℑ‘(𝐴 / (abs‘𝐴)))) | 
| 35 | 31, 34 | breqtrrd 5170 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) → 0
< (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴)))))) | 
| 36 |  | resinval 16172 | . . . . . 6
⊢
((ℑ‘(log‘𝐴)) ∈ ℝ →
(sin‘(ℑ‘(log‘𝐴))) = (ℑ‘(exp‘(i ·
(ℑ‘(log‘𝐴)))))) | 
| 37 | 11, 36 | syl 17 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(sin‘(ℑ‘(log‘𝐴))) = (ℑ‘(exp‘(i ·
(ℑ‘(log‘𝐴)))))) | 
| 38 | 35, 37 | breqtrrd 5170 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) → 0
< (sin‘(ℑ‘(log‘𝐴)))) | 
| 39 | 11 | resincld 16180 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(sin‘(ℑ‘(log‘𝐴))) ∈ ℝ) | 
| 40 | 39 | lt0neg2d 11834 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(0 < (sin‘(ℑ‘(log‘𝐴))) ↔
-(sin‘(ℑ‘(log‘𝐴))) < 0)) | 
| 41 | 38, 40 | mpbid 232 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
-(sin‘(ℑ‘(log‘𝐴))) < 0) | 
| 42 |  | pire 26501 | . . . . . . . . . . 11
⊢ π
∈ ℝ | 
| 43 |  | readdcl 11239 | . . . . . . . . . . 11
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ)
→ ((ℑ‘(log‘𝐴)) + π) ∈ ℝ) | 
| 44 | 11, 42, 43 | sylancl 586 | . . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((ℑ‘(log‘𝐴)) + π) ∈ ℝ) | 
| 45 | 44 | adantr 480 | . . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) ∧
(ℑ‘(log‘𝐴)) ≤ 0) →
((ℑ‘(log‘𝐴)) + π) ∈ ℝ) | 
| 46 |  | df-neg 11496 | . . . . . . . . . . . 12
⊢ -π =
(0 − π) | 
| 47 |  | logimcl 26612 | . . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) | 
| 48 | 8, 47 | syldan 591 | . . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) | 
| 49 | 48 | simpld 494 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
-π < (ℑ‘(log‘𝐴))) | 
| 50 | 42 | renegcli 11571 | . . . . . . . . . . . . . 14
⊢ -π
∈ ℝ | 
| 51 |  | ltle 11350 | . . . . . . . . . . . . . 14
⊢ ((-π
∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π <
(ℑ‘(log‘𝐴)) → -π ≤
(ℑ‘(log‘𝐴)))) | 
| 52 | 50, 11, 51 | sylancr 587 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(-π < (ℑ‘(log‘𝐴)) → -π ≤
(ℑ‘(log‘𝐴)))) | 
| 53 | 49, 52 | mpd 15 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
-π ≤ (ℑ‘(log‘𝐴))) | 
| 54 | 46, 53 | eqbrtrrid 5178 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(0 − π) ≤ (ℑ‘(log‘𝐴))) | 
| 55 | 42 | a1i 11 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
π ∈ ℝ) | 
| 56 | 28, 55, 11 | lesubaddd 11861 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((0 − π) ≤ (ℑ‘(log‘𝐴)) ↔ 0 ≤
((ℑ‘(log‘𝐴)) + π))) | 
| 57 | 54, 56 | mpbid 232 | . . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) → 0
≤ ((ℑ‘(log‘𝐴)) + π)) | 
| 58 | 57 | adantr 480 | . . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) ∧
(ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤
((ℑ‘(log‘𝐴)) + π)) | 
| 59 | 11, 28, 55 | leadd1d 11858 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((ℑ‘(log‘𝐴)) ≤ 0 ↔
((ℑ‘(log‘𝐴)) + π) ≤ (0 +
π))) | 
| 60 | 59 | biimpa 476 | . . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) ∧
(ℑ‘(log‘𝐴)) ≤ 0) →
((ℑ‘(log‘𝐴)) + π) ≤ (0 + π)) | 
| 61 |  | picn 26502 | . . . . . . . . . . 11
⊢ π
∈ ℂ | 
| 62 | 61 | addlidi 11450 | . . . . . . . . . 10
⊢ (0 +
π) = π | 
| 63 | 60, 62 | breqtrdi 5183 | . . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) ∧
(ℑ‘(log‘𝐴)) ≤ 0) →
((ℑ‘(log‘𝐴)) + π) ≤ π) | 
| 64 | 27, 42 | elicc2i 13454 | . . . . . . . . 9
⊢
(((ℑ‘(log‘𝐴)) + π) ∈ (0[,]π) ↔
(((ℑ‘(log‘𝐴)) + π) ∈ ℝ ∧ 0 ≤
((ℑ‘(log‘𝐴)) + π) ∧
((ℑ‘(log‘𝐴)) + π) ≤ π)) | 
| 65 | 45, 58, 63, 64 | syl3anbrc 1343 | . . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) ∧
(ℑ‘(log‘𝐴)) ≤ 0) →
((ℑ‘(log‘𝐴)) + π) ∈
(0[,]π)) | 
| 66 |  | sinq12ge0 26551 | . . . . . . . 8
⊢
(((ℑ‘(log‘𝐴)) + π) ∈ (0[,]π) → 0 ≤
(sin‘((ℑ‘(log‘𝐴)) + π))) | 
| 67 | 65, 66 | syl 17 | . . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) ∧
(ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤
(sin‘((ℑ‘(log‘𝐴)) + π))) | 
| 68 | 11 | recnd 11290 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ ℂ) | 
| 69 |  | sinppi 26532 | . . . . . . . . 9
⊢
((ℑ‘(log‘𝐴)) ∈ ℂ →
(sin‘((ℑ‘(log‘𝐴)) + π)) =
-(sin‘(ℑ‘(log‘𝐴)))) | 
| 70 | 68, 69 | syl 17 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(sin‘((ℑ‘(log‘𝐴)) + π)) =
-(sin‘(ℑ‘(log‘𝐴)))) | 
| 71 | 70 | adantr 480 | . . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) ∧
(ℑ‘(log‘𝐴)) ≤ 0) →
(sin‘((ℑ‘(log‘𝐴)) + π)) =
-(sin‘(ℑ‘(log‘𝐴)))) | 
| 72 | 67, 71 | breqtrd 5168 | . . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) ∧
(ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤
-(sin‘(ℑ‘(log‘𝐴)))) | 
| 73 | 72 | ex 412 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((ℑ‘(log‘𝐴)) ≤ 0 → 0 ≤
-(sin‘(ℑ‘(log‘𝐴))))) | 
| 74 | 73 | con3d 152 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(¬ 0 ≤ -(sin‘(ℑ‘(log‘𝐴))) → ¬
(ℑ‘(log‘𝐴)) ≤ 0)) | 
| 75 | 39 | renegcld 11691 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
-(sin‘(ℑ‘(log‘𝐴))) ∈ ℝ) | 
| 76 |  | ltnle 11341 | . . . . 5
⊢
((-(sin‘(ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ∈ ℝ)
→ (-(sin‘(ℑ‘(log‘𝐴))) < 0 ↔ ¬ 0 ≤
-(sin‘(ℑ‘(log‘𝐴))))) | 
| 77 | 75, 27, 76 | sylancl 586 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(-(sin‘(ℑ‘(log‘𝐴))) < 0 ↔ ¬ 0 ≤
-(sin‘(ℑ‘(log‘𝐴))))) | 
| 78 |  | ltnle 11341 | . . . . 5
⊢ ((0
∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (0 <
(ℑ‘(log‘𝐴)) ↔ ¬
(ℑ‘(log‘𝐴)) ≤ 0)) | 
| 79 | 27, 11, 78 | sylancr 587 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(0 < (ℑ‘(log‘𝐴)) ↔ ¬
(ℑ‘(log‘𝐴)) ≤ 0)) | 
| 80 | 74, 77, 79 | 3imtr4d 294 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(-(sin‘(ℑ‘(log‘𝐴))) < 0 → 0 <
(ℑ‘(log‘𝐴)))) | 
| 81 | 41, 80 | mpd 15 | . 2
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) → 0
< (ℑ‘(log‘𝐴))) | 
| 82 | 48 | simprd 495 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ≤ π) | 
| 83 |  | rpre 13044 | . . . . . . . . 9
⊢ (-𝐴 ∈ ℝ+
→ -𝐴 ∈
ℝ) | 
| 84 | 83 | renegcld 11691 | . . . . . . . 8
⊢ (-𝐴 ∈ ℝ+
→ --𝐴 ∈
ℝ) | 
| 85 |  | negneg 11560 | . . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | 
| 86 | 85 | adantr 480 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
--𝐴 = 𝐴) | 
| 87 | 86 | eleq1d 2825 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(--𝐴 ∈ ℝ ↔
𝐴 ∈
ℝ)) | 
| 88 | 84, 87 | imbitrid 244 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(-𝐴 ∈
ℝ+ → 𝐴 ∈ ℝ)) | 
| 89 |  | lognegb 26633 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+
↔ (ℑ‘(log‘𝐴)) = π)) | 
| 90 | 8, 89 | syldan 591 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(-𝐴 ∈
ℝ+ ↔ (ℑ‘(log‘𝐴)) = π)) | 
| 91 |  | reim0b 15159 | . . . . . . . 8
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔
(ℑ‘𝐴) =
0)) | 
| 92 | 91 | adantr 480 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(𝐴 ∈ ℝ ↔
(ℑ‘𝐴) =
0)) | 
| 93 | 88, 90, 92 | 3imtr3d 293 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((ℑ‘(log‘𝐴)) = π → (ℑ‘𝐴) = 0)) | 
| 94 | 93 | necon3d 2960 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((ℑ‘𝐴) ≠ 0
→ (ℑ‘(log‘𝐴)) ≠ π)) | 
| 95 | 3, 94 | mpd 15 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ≠ π) | 
| 96 | 95 | necomd 2995 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
π ≠ (ℑ‘(log‘𝐴))) | 
| 97 | 11, 55, 82, 96 | leneltd 11416 | . 2
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) < π) | 
| 98 |  | 0xr 11309 | . . 3
⊢ 0 ∈
ℝ* | 
| 99 | 42 | rexri 11320 | . . 3
⊢ π
∈ ℝ* | 
| 100 |  | elioo2 13429 | . . 3
⊢ ((0
∈ ℝ* ∧ π ∈ ℝ*) →
((ℑ‘(log‘𝐴)) ∈ (0(,)π) ↔
((ℑ‘(log‘𝐴)) ∈ ℝ ∧ 0 <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))) | 
| 101 | 98, 99, 100 | mp2an 692 | . 2
⊢
((ℑ‘(log‘𝐴)) ∈ (0(,)π) ↔
((ℑ‘(log‘𝐴)) ∈ ℝ ∧ 0 <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π)) | 
| 102 | 11, 81, 97, 101 | syl3anbrc 1343 | 1
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ (0(,)π)) |