MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argimgt0 Structured version   Visualization version   GIF version

Theorem argimgt0 26655
Description: Closure of the argument of a complex number with positive imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
argimgt0 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))

Proof of Theorem argimgt0
StepHypRef Expression
1 imcl 15151 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
2 gt0ne0 11729 . . . . . 6 (((ℑ‘𝐴) ∈ ℝ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
31, 2sylan 580 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
4 fveq2 6905 . . . . . . 7 (𝐴 = 0 → (ℑ‘𝐴) = (ℑ‘0))
5 im0 15193 . . . . . . 7 (ℑ‘0) = 0
64, 5eqtrdi 2792 . . . . . 6 (𝐴 = 0 → (ℑ‘𝐴) = 0)
76necon3i 2972 . . . . 5 ((ℑ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
83, 7syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 𝐴 ≠ 0)
9 logcl 26611 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
108, 9syldan 591 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘𝐴) ∈ ℂ)
1110imcld 15235 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
12 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘𝐴))
13 abscl 15318 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1413adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ∈ ℝ)
1514recnd 11290 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ∈ ℂ)
1615mul01d 11461 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · 0) = 0)
17 simpl 482 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 𝐴 ∈ ℂ)
18 absrpcl 15328 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
198, 18syldan 591 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ∈ ℝ+)
2019rpne0d 13083 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ≠ 0)
2117, 15, 20divcld 12044 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (𝐴 / (abs‘𝐴)) ∈ ℂ)
2214, 21immul2d 15268 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴)))))
2317, 15, 20divcan2d 12046 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · (𝐴 / (abs‘𝐴))) = 𝐴)
2423fveq2d 6909 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = (ℑ‘𝐴))
2522, 24eqtr3d 2778 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴)))) = (ℑ‘𝐴))
2612, 16, 253brtr4d 5174 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴)))))
27 0re 11264 . . . . . . . . 9 0 ∈ ℝ
2827a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 ∈ ℝ)
2921imcld 15235 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(𝐴 / (abs‘𝐴))) ∈ ℝ)
3028, 29, 19ltmul2d 13120 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(𝐴 / (abs‘𝐴))) ↔ ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴))))))
3126, 30mpbird 257 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(𝐴 / (abs‘𝐴))))
32 efiarg 26650 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
338, 32syldan 591 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
3433fveq2d 6909 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))) = (ℑ‘(𝐴 / (abs‘𝐴))))
3531, 34breqtrrd 5170 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
36 resinval 16172 . . . . . 6 ((ℑ‘(log‘𝐴)) ∈ ℝ → (sin‘(ℑ‘(log‘𝐴))) = (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3711, 36syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (sin‘(ℑ‘(log‘𝐴))) = (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3835, 37breqtrrd 5170 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (sin‘(ℑ‘(log‘𝐴))))
3911resincld 16180 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (sin‘(ℑ‘(log‘𝐴))) ∈ ℝ)
4039lt0neg2d 11834 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (sin‘(ℑ‘(log‘𝐴))) ↔ -(sin‘(ℑ‘(log‘𝐴))) < 0))
4138, 40mpbid 232 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -(sin‘(ℑ‘(log‘𝐴))) < 0)
42 pire 26501 . . . . . . . . . . 11 π ∈ ℝ
43 readdcl 11239 . . . . . . . . . . 11 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘𝐴)) + π) ∈ ℝ)
4411, 42, 43sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) + π) ∈ ℝ)
4544adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ∈ ℝ)
46 df-neg 11496 . . . . . . . . . . . 12 -π = (0 − π)
47 logimcl 26612 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
488, 47syldan 591 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
4948simpld 494 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π < (ℑ‘(log‘𝐴)))
5042renegcli 11571 . . . . . . . . . . . . . 14 -π ∈ ℝ
51 ltle 11350 . . . . . . . . . . . . . 14 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5250, 11, 51sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5349, 52mpd 15 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴)))
5446, 53eqbrtrrid 5178 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 − π) ≤ (ℑ‘(log‘𝐴)))
5542a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → π ∈ ℝ)
5628, 55, 11lesubaddd 11861 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((0 − π) ≤ (ℑ‘(log‘𝐴)) ↔ 0 ≤ ((ℑ‘(log‘𝐴)) + π)))
5754, 56mpbid 232 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 ≤ ((ℑ‘(log‘𝐴)) + π))
5857adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤ ((ℑ‘(log‘𝐴)) + π))
5911, 28, 55leadd1d 11858 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) ≤ 0 ↔ ((ℑ‘(log‘𝐴)) + π) ≤ (0 + π)))
6059biimpa 476 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ≤ (0 + π))
61 picn 26502 . . . . . . . . . . 11 π ∈ ℂ
6261addlidi 11450 . . . . . . . . . 10 (0 + π) = π
6360, 62breqtrdi 5183 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ≤ π)
6427, 42elicc2i 13454 . . . . . . . . 9 (((ℑ‘(log‘𝐴)) + π) ∈ (0[,]π) ↔ (((ℑ‘(log‘𝐴)) + π) ∈ ℝ ∧ 0 ≤ ((ℑ‘(log‘𝐴)) + π) ∧ ((ℑ‘(log‘𝐴)) + π) ≤ π))
6545, 58, 63, 64syl3anbrc 1343 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ∈ (0[,]π))
66 sinq12ge0 26551 . . . . . . . 8 (((ℑ‘(log‘𝐴)) + π) ∈ (0[,]π) → 0 ≤ (sin‘((ℑ‘(log‘𝐴)) + π)))
6765, 66syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤ (sin‘((ℑ‘(log‘𝐴)) + π)))
6811recnd 11290 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
69 sinppi 26532 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ ℂ → (sin‘((ℑ‘(log‘𝐴)) + π)) = -(sin‘(ℑ‘(log‘𝐴))))
7068, 69syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (sin‘((ℑ‘(log‘𝐴)) + π)) = -(sin‘(ℑ‘(log‘𝐴))))
7170adantr 480 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → (sin‘((ℑ‘(log‘𝐴)) + π)) = -(sin‘(ℑ‘(log‘𝐴))))
7267, 71breqtrd 5168 . . . . . 6 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤ -(sin‘(ℑ‘(log‘𝐴))))
7372ex 412 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) ≤ 0 → 0 ≤ -(sin‘(ℑ‘(log‘𝐴)))))
7473con3d 152 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (¬ 0 ≤ -(sin‘(ℑ‘(log‘𝐴))) → ¬ (ℑ‘(log‘𝐴)) ≤ 0))
7539renegcld 11691 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -(sin‘(ℑ‘(log‘𝐴))) ∈ ℝ)
76 ltnle 11341 . . . . 5 ((-(sin‘(ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ∈ ℝ) → (-(sin‘(ℑ‘(log‘𝐴))) < 0 ↔ ¬ 0 ≤ -(sin‘(ℑ‘(log‘𝐴)))))
7775, 27, 76sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-(sin‘(ℑ‘(log‘𝐴))) < 0 ↔ ¬ 0 ≤ -(sin‘(ℑ‘(log‘𝐴)))))
78 ltnle 11341 . . . . 5 ((0 ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (0 < (ℑ‘(log‘𝐴)) ↔ ¬ (ℑ‘(log‘𝐴)) ≤ 0))
7927, 11, 78sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐴)) ↔ ¬ (ℑ‘(log‘𝐴)) ≤ 0))
8074, 77, 793imtr4d 294 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-(sin‘(ℑ‘(log‘𝐴))) < 0 → 0 < (ℑ‘(log‘𝐴))))
8141, 80mpd 15 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(log‘𝐴)))
8248simprd 495 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ π)
83 rpre 13044 . . . . . . . . 9 (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
8483renegcld 11691 . . . . . . . 8 (-𝐴 ∈ ℝ+ → --𝐴 ∈ ℝ)
85 negneg 11560 . . . . . . . . . 10 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
8685adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → --𝐴 = 𝐴)
8786eleq1d 2825 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (--𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
8884, 87imbitrid 244 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-𝐴 ∈ ℝ+𝐴 ∈ ℝ))
89 lognegb 26633 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
908, 89syldan 591 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
91 reim0b 15159 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
9291adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
9388, 90, 923imtr3d 293 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) = π → (ℑ‘𝐴) = 0))
9493necon3d 2960 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘𝐴) ≠ 0 → (ℑ‘(log‘𝐴)) ≠ π))
953, 94mpd 15 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ≠ π)
9695necomd 2995 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → π ≠ (ℑ‘(log‘𝐴)))
9711, 55, 82, 96leneltd 11416 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) < π)
98 0xr 11309 . . 3 0 ∈ ℝ*
9942rexri 11320 . . 3 π ∈ ℝ*
100 elioo2 13429 . . 3 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((ℑ‘(log‘𝐴)) ∈ (0(,)π) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ 0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π)))
10198, 99, 100mp2an 692 . 2 ((ℑ‘(log‘𝐴)) ∈ (0(,)π) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ 0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))
10211, 81, 97, 101syl3anbrc 1343 1 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939   class class class wbr 5142  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  ici 11158   + caddc 11159   · cmul 11161  *cxr 11295   < clt 11296  cle 11297  cmin 11493  -cneg 11494   / cdiv 11921  +crp 13035  (,)cioo 13388  [,]cicc 13391  cim 15138  abscabs 15274  expce 16098  sincsin 16100  πcpi 16103  logclog 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107  df-pi 16109  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903  df-log 26599
This theorem is referenced by:  argimlt0  26656  logneg2  26658  logcnlem3  26687  atanlogaddlem  26957
  Copyright terms: Public domain W3C validator