MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argimgt0 Structured version   Visualization version   GIF version

Theorem argimgt0 26578
Description: Closure of the argument of a complex number with positive imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
argimgt0 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))

Proof of Theorem argimgt0
StepHypRef Expression
1 imcl 15135 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
2 gt0ne0 11707 . . . . . 6 (((ℑ‘𝐴) ∈ ℝ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
31, 2sylan 580 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
4 fveq2 6881 . . . . . . 7 (𝐴 = 0 → (ℑ‘𝐴) = (ℑ‘0))
5 im0 15177 . . . . . . 7 (ℑ‘0) = 0
64, 5eqtrdi 2787 . . . . . 6 (𝐴 = 0 → (ℑ‘𝐴) = 0)
76necon3i 2965 . . . . 5 ((ℑ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
83, 7syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 𝐴 ≠ 0)
9 logcl 26534 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
108, 9syldan 591 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘𝐴) ∈ ℂ)
1110imcld 15219 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
12 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘𝐴))
13 abscl 15302 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1413adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ∈ ℝ)
1514recnd 11268 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ∈ ℂ)
1615mul01d 11439 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · 0) = 0)
17 simpl 482 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 𝐴 ∈ ℂ)
18 absrpcl 15312 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
198, 18syldan 591 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ∈ ℝ+)
2019rpne0d 13061 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ≠ 0)
2117, 15, 20divcld 12022 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (𝐴 / (abs‘𝐴)) ∈ ℂ)
2214, 21immul2d 15252 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴)))))
2317, 15, 20divcan2d 12024 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · (𝐴 / (abs‘𝐴))) = 𝐴)
2423fveq2d 6885 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = (ℑ‘𝐴))
2522, 24eqtr3d 2773 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴)))) = (ℑ‘𝐴))
2612, 16, 253brtr4d 5156 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴)))))
27 0re 11242 . . . . . . . . 9 0 ∈ ℝ
2827a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 ∈ ℝ)
2921imcld 15219 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(𝐴 / (abs‘𝐴))) ∈ ℝ)
3028, 29, 19ltmul2d 13098 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(𝐴 / (abs‘𝐴))) ↔ ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴))))))
3126, 30mpbird 257 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(𝐴 / (abs‘𝐴))))
32 efiarg 26573 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
338, 32syldan 591 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
3433fveq2d 6885 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))) = (ℑ‘(𝐴 / (abs‘𝐴))))
3531, 34breqtrrd 5152 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
36 resinval 16158 . . . . . 6 ((ℑ‘(log‘𝐴)) ∈ ℝ → (sin‘(ℑ‘(log‘𝐴))) = (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3711, 36syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (sin‘(ℑ‘(log‘𝐴))) = (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3835, 37breqtrrd 5152 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (sin‘(ℑ‘(log‘𝐴))))
3911resincld 16166 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (sin‘(ℑ‘(log‘𝐴))) ∈ ℝ)
4039lt0neg2d 11812 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (sin‘(ℑ‘(log‘𝐴))) ↔ -(sin‘(ℑ‘(log‘𝐴))) < 0))
4138, 40mpbid 232 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -(sin‘(ℑ‘(log‘𝐴))) < 0)
42 pire 26423 . . . . . . . . . . 11 π ∈ ℝ
43 readdcl 11217 . . . . . . . . . . 11 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘𝐴)) + π) ∈ ℝ)
4411, 42, 43sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) + π) ∈ ℝ)
4544adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ∈ ℝ)
46 df-neg 11474 . . . . . . . . . . . 12 -π = (0 − π)
47 logimcl 26535 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
488, 47syldan 591 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
4948simpld 494 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π < (ℑ‘(log‘𝐴)))
5042renegcli 11549 . . . . . . . . . . . . . 14 -π ∈ ℝ
51 ltle 11328 . . . . . . . . . . . . . 14 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5250, 11, 51sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5349, 52mpd 15 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴)))
5446, 53eqbrtrrid 5160 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 − π) ≤ (ℑ‘(log‘𝐴)))
5542a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → π ∈ ℝ)
5628, 55, 11lesubaddd 11839 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((0 − π) ≤ (ℑ‘(log‘𝐴)) ↔ 0 ≤ ((ℑ‘(log‘𝐴)) + π)))
5754, 56mpbid 232 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 ≤ ((ℑ‘(log‘𝐴)) + π))
5857adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤ ((ℑ‘(log‘𝐴)) + π))
5911, 28, 55leadd1d 11836 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) ≤ 0 ↔ ((ℑ‘(log‘𝐴)) + π) ≤ (0 + π)))
6059biimpa 476 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ≤ (0 + π))
61 picn 26424 . . . . . . . . . . 11 π ∈ ℂ
6261addlidi 11428 . . . . . . . . . 10 (0 + π) = π
6360, 62breqtrdi 5165 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ≤ π)
6427, 42elicc2i 13434 . . . . . . . . 9 (((ℑ‘(log‘𝐴)) + π) ∈ (0[,]π) ↔ (((ℑ‘(log‘𝐴)) + π) ∈ ℝ ∧ 0 ≤ ((ℑ‘(log‘𝐴)) + π) ∧ ((ℑ‘(log‘𝐴)) + π) ≤ π))
6545, 58, 63, 64syl3anbrc 1344 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ∈ (0[,]π))
66 sinq12ge0 26474 . . . . . . . 8 (((ℑ‘(log‘𝐴)) + π) ∈ (0[,]π) → 0 ≤ (sin‘((ℑ‘(log‘𝐴)) + π)))
6765, 66syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤ (sin‘((ℑ‘(log‘𝐴)) + π)))
6811recnd 11268 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
69 sinppi 26455 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ ℂ → (sin‘((ℑ‘(log‘𝐴)) + π)) = -(sin‘(ℑ‘(log‘𝐴))))
7068, 69syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (sin‘((ℑ‘(log‘𝐴)) + π)) = -(sin‘(ℑ‘(log‘𝐴))))
7170adantr 480 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → (sin‘((ℑ‘(log‘𝐴)) + π)) = -(sin‘(ℑ‘(log‘𝐴))))
7267, 71breqtrd 5150 . . . . . 6 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤ -(sin‘(ℑ‘(log‘𝐴))))
7372ex 412 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) ≤ 0 → 0 ≤ -(sin‘(ℑ‘(log‘𝐴)))))
7473con3d 152 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (¬ 0 ≤ -(sin‘(ℑ‘(log‘𝐴))) → ¬ (ℑ‘(log‘𝐴)) ≤ 0))
7539renegcld 11669 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -(sin‘(ℑ‘(log‘𝐴))) ∈ ℝ)
76 ltnle 11319 . . . . 5 ((-(sin‘(ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ∈ ℝ) → (-(sin‘(ℑ‘(log‘𝐴))) < 0 ↔ ¬ 0 ≤ -(sin‘(ℑ‘(log‘𝐴)))))
7775, 27, 76sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-(sin‘(ℑ‘(log‘𝐴))) < 0 ↔ ¬ 0 ≤ -(sin‘(ℑ‘(log‘𝐴)))))
78 ltnle 11319 . . . . 5 ((0 ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (0 < (ℑ‘(log‘𝐴)) ↔ ¬ (ℑ‘(log‘𝐴)) ≤ 0))
7927, 11, 78sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐴)) ↔ ¬ (ℑ‘(log‘𝐴)) ≤ 0))
8074, 77, 793imtr4d 294 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-(sin‘(ℑ‘(log‘𝐴))) < 0 → 0 < (ℑ‘(log‘𝐴))))
8141, 80mpd 15 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(log‘𝐴)))
8248simprd 495 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ π)
83 rpre 13022 . . . . . . . . 9 (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
8483renegcld 11669 . . . . . . . 8 (-𝐴 ∈ ℝ+ → --𝐴 ∈ ℝ)
85 negneg 11538 . . . . . . . . . 10 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
8685adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → --𝐴 = 𝐴)
8786eleq1d 2820 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (--𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
8884, 87imbitrid 244 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-𝐴 ∈ ℝ+𝐴 ∈ ℝ))
89 lognegb 26556 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
908, 89syldan 591 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
91 reim0b 15143 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
9291adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
9388, 90, 923imtr3d 293 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) = π → (ℑ‘𝐴) = 0))
9493necon3d 2954 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘𝐴) ≠ 0 → (ℑ‘(log‘𝐴)) ≠ π))
953, 94mpd 15 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ≠ π)
9695necomd 2988 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → π ≠ (ℑ‘(log‘𝐴)))
9711, 55, 82, 96leneltd 11394 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) < π)
98 0xr 11287 . . 3 0 ∈ ℝ*
9942rexri 11298 . . 3 π ∈ ℝ*
100 elioo2 13408 . . 3 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((ℑ‘(log‘𝐴)) ∈ (0(,)π) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ 0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π)))
10198, 99, 100mp2an 692 . 2 ((ℑ‘(log‘𝐴)) ∈ (0(,)π) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ 0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))
10211, 81, 97, 101syl3anbrc 1344 1 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  ici 11136   + caddc 11137   · cmul 11139  *cxr 11273   < clt 11274  cle 11275  cmin 11471  -cneg 11472   / cdiv 11899  +crp 13013  (,)cioo 13367  [,]cicc 13370  cim 15122  abscabs 15258  expce 16082  sincsin 16084  πcpi 16087  logclog 26520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522
This theorem is referenced by:  argimlt0  26579  logneg2  26581  logcnlem3  26610  atanlogaddlem  26880
  Copyright terms: Public domain W3C validator