MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argimgt0 Structured version   Visualization version   GIF version

Theorem argimgt0 25967
Description: Closure of the argument of a complex number with positive imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
argimgt0 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))

Proof of Theorem argimgt0
StepHypRef Expression
1 imcl 14996 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
2 gt0ne0 11620 . . . . . 6 (((ℑ‘𝐴) ∈ ℝ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
31, 2sylan 580 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
4 fveq2 6842 . . . . . . 7 (𝐴 = 0 → (ℑ‘𝐴) = (ℑ‘0))
5 im0 15038 . . . . . . 7 (ℑ‘0) = 0
64, 5eqtrdi 2792 . . . . . 6 (𝐴 = 0 → (ℑ‘𝐴) = 0)
76necon3i 2976 . . . . 5 ((ℑ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
83, 7syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 𝐴 ≠ 0)
9 logcl 25924 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
108, 9syldan 591 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘𝐴) ∈ ℂ)
1110imcld 15080 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
12 simpr 485 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘𝐴))
13 abscl 15163 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1413adantr 481 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ∈ ℝ)
1514recnd 11183 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ∈ ℂ)
1615mul01d 11354 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · 0) = 0)
17 simpl 483 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 𝐴 ∈ ℂ)
18 absrpcl 15173 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
198, 18syldan 591 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ∈ ℝ+)
2019rpne0d 12962 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ≠ 0)
2117, 15, 20divcld 11931 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (𝐴 / (abs‘𝐴)) ∈ ℂ)
2214, 21immul2d 15113 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴)))))
2317, 15, 20divcan2d 11933 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · (𝐴 / (abs‘𝐴))) = 𝐴)
2423fveq2d 6846 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = (ℑ‘𝐴))
2522, 24eqtr3d 2778 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴)))) = (ℑ‘𝐴))
2612, 16, 253brtr4d 5137 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴)))))
27 0re 11157 . . . . . . . . 9 0 ∈ ℝ
2827a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 ∈ ℝ)
2921imcld 15080 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(𝐴 / (abs‘𝐴))) ∈ ℝ)
3028, 29, 19ltmul2d 12999 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(𝐴 / (abs‘𝐴))) ↔ ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴))))))
3126, 30mpbird 256 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(𝐴 / (abs‘𝐴))))
32 efiarg 25962 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
338, 32syldan 591 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
3433fveq2d 6846 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))) = (ℑ‘(𝐴 / (abs‘𝐴))))
3531, 34breqtrrd 5133 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
36 resinval 16017 . . . . . 6 ((ℑ‘(log‘𝐴)) ∈ ℝ → (sin‘(ℑ‘(log‘𝐴))) = (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3711, 36syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (sin‘(ℑ‘(log‘𝐴))) = (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3835, 37breqtrrd 5133 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (sin‘(ℑ‘(log‘𝐴))))
3911resincld 16025 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (sin‘(ℑ‘(log‘𝐴))) ∈ ℝ)
4039lt0neg2d 11725 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (sin‘(ℑ‘(log‘𝐴))) ↔ -(sin‘(ℑ‘(log‘𝐴))) < 0))
4138, 40mpbid 231 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -(sin‘(ℑ‘(log‘𝐴))) < 0)
42 pire 25815 . . . . . . . . . . 11 π ∈ ℝ
43 readdcl 11134 . . . . . . . . . . 11 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘𝐴)) + π) ∈ ℝ)
4411, 42, 43sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) + π) ∈ ℝ)
4544adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ∈ ℝ)
46 df-neg 11388 . . . . . . . . . . . 12 -π = (0 − π)
47 logimcl 25925 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
488, 47syldan 591 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
4948simpld 495 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π < (ℑ‘(log‘𝐴)))
5042renegcli 11462 . . . . . . . . . . . . . 14 -π ∈ ℝ
51 ltle 11243 . . . . . . . . . . . . . 14 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5250, 11, 51sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5349, 52mpd 15 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴)))
5446, 53eqbrtrrid 5141 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 − π) ≤ (ℑ‘(log‘𝐴)))
5542a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → π ∈ ℝ)
5628, 55, 11lesubaddd 11752 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((0 − π) ≤ (ℑ‘(log‘𝐴)) ↔ 0 ≤ ((ℑ‘(log‘𝐴)) + π)))
5754, 56mpbid 231 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 ≤ ((ℑ‘(log‘𝐴)) + π))
5857adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤ ((ℑ‘(log‘𝐴)) + π))
5911, 28, 55leadd1d 11749 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) ≤ 0 ↔ ((ℑ‘(log‘𝐴)) + π) ≤ (0 + π)))
6059biimpa 477 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ≤ (0 + π))
61 picn 25816 . . . . . . . . . . 11 π ∈ ℂ
6261addid2i 11343 . . . . . . . . . 10 (0 + π) = π
6360, 62breqtrdi 5146 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ≤ π)
6427, 42elicc2i 13330 . . . . . . . . 9 (((ℑ‘(log‘𝐴)) + π) ∈ (0[,]π) ↔ (((ℑ‘(log‘𝐴)) + π) ∈ ℝ ∧ 0 ≤ ((ℑ‘(log‘𝐴)) + π) ∧ ((ℑ‘(log‘𝐴)) + π) ≤ π))
6545, 58, 63, 64syl3anbrc 1343 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ∈ (0[,]π))
66 sinq12ge0 25865 . . . . . . . 8 (((ℑ‘(log‘𝐴)) + π) ∈ (0[,]π) → 0 ≤ (sin‘((ℑ‘(log‘𝐴)) + π)))
6765, 66syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤ (sin‘((ℑ‘(log‘𝐴)) + π)))
6811recnd 11183 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
69 sinppi 25846 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ ℂ → (sin‘((ℑ‘(log‘𝐴)) + π)) = -(sin‘(ℑ‘(log‘𝐴))))
7068, 69syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (sin‘((ℑ‘(log‘𝐴)) + π)) = -(sin‘(ℑ‘(log‘𝐴))))
7170adantr 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → (sin‘((ℑ‘(log‘𝐴)) + π)) = -(sin‘(ℑ‘(log‘𝐴))))
7267, 71breqtrd 5131 . . . . . 6 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤ -(sin‘(ℑ‘(log‘𝐴))))
7372ex 413 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) ≤ 0 → 0 ≤ -(sin‘(ℑ‘(log‘𝐴)))))
7473con3d 152 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (¬ 0 ≤ -(sin‘(ℑ‘(log‘𝐴))) → ¬ (ℑ‘(log‘𝐴)) ≤ 0))
7539renegcld 11582 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -(sin‘(ℑ‘(log‘𝐴))) ∈ ℝ)
76 ltnle 11234 . . . . 5 ((-(sin‘(ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ∈ ℝ) → (-(sin‘(ℑ‘(log‘𝐴))) < 0 ↔ ¬ 0 ≤ -(sin‘(ℑ‘(log‘𝐴)))))
7775, 27, 76sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-(sin‘(ℑ‘(log‘𝐴))) < 0 ↔ ¬ 0 ≤ -(sin‘(ℑ‘(log‘𝐴)))))
78 ltnle 11234 . . . . 5 ((0 ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (0 < (ℑ‘(log‘𝐴)) ↔ ¬ (ℑ‘(log‘𝐴)) ≤ 0))
7927, 11, 78sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐴)) ↔ ¬ (ℑ‘(log‘𝐴)) ≤ 0))
8074, 77, 793imtr4d 293 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-(sin‘(ℑ‘(log‘𝐴))) < 0 → 0 < (ℑ‘(log‘𝐴))))
8141, 80mpd 15 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(log‘𝐴)))
8248simprd 496 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ π)
83 rpre 12923 . . . . . . . . 9 (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
8483renegcld 11582 . . . . . . . 8 (-𝐴 ∈ ℝ+ → --𝐴 ∈ ℝ)
85 negneg 11451 . . . . . . . . . 10 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
8685adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → --𝐴 = 𝐴)
8786eleq1d 2822 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (--𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
8884, 87imbitrid 243 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-𝐴 ∈ ℝ+𝐴 ∈ ℝ))
89 lognegb 25945 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
908, 89syldan 591 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
91 reim0b 15004 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
9291adantr 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
9388, 90, 923imtr3d 292 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) = π → (ℑ‘𝐴) = 0))
9493necon3d 2964 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘𝐴) ≠ 0 → (ℑ‘(log‘𝐴)) ≠ π))
953, 94mpd 15 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ≠ π)
9695necomd 2999 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → π ≠ (ℑ‘(log‘𝐴)))
9711, 55, 82, 96leneltd 11309 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) < π)
98 0xr 11202 . . 3 0 ∈ ℝ*
9942rexri 11213 . . 3 π ∈ ℝ*
100 elioo2 13305 . . 3 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((ℑ‘(log‘𝐴)) ∈ (0(,)π) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ 0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π)))
10198, 99, 100mp2an 690 . 2 ((ℑ‘(log‘𝐴)) ∈ (0(,)π) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ 0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))
10211, 81, 97, 101syl3anbrc 1343 1 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  ici 11053   + caddc 11054   · cmul 11056  *cxr 11188   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  +crp 12915  (,)cioo 13264  [,]cicc 13267  cim 14983  abscabs 15119  expce 15944  sincsin 15946  πcpi 15949  logclog 25910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912
This theorem is referenced by:  argimlt0  25968  logneg2  25970  logcnlem3  25999  atanlogaddlem  26263
  Copyright terms: Public domain W3C validator