MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argimgt0 Structured version   Visualization version   GIF version

Theorem argimgt0 25203
Description: Closure of the argument of a complex number with positive imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
argimgt0 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))

Proof of Theorem argimgt0
StepHypRef Expression
1 imcl 14462 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
2 gt0ne0 11094 . . . . . 6 (((ℑ‘𝐴) ∈ ℝ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
31, 2sylan 583 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
4 fveq2 6645 . . . . . . 7 (𝐴 = 0 → (ℑ‘𝐴) = (ℑ‘0))
5 im0 14504 . . . . . . 7 (ℑ‘0) = 0
64, 5eqtrdi 2849 . . . . . 6 (𝐴 = 0 → (ℑ‘𝐴) = 0)
76necon3i 3019 . . . . 5 ((ℑ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
83, 7syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 𝐴 ≠ 0)
9 logcl 25160 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
108, 9syldan 594 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘𝐴) ∈ ℂ)
1110imcld 14546 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
12 simpr 488 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘𝐴))
13 abscl 14630 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1413adantr 484 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ∈ ℝ)
1514recnd 10658 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ∈ ℂ)
1615mul01d 10828 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · 0) = 0)
17 simpl 486 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 𝐴 ∈ ℂ)
18 absrpcl 14640 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
198, 18syldan 594 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ∈ ℝ+)
2019rpne0d 12424 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (abs‘𝐴) ≠ 0)
2117, 15, 20divcld 11405 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (𝐴 / (abs‘𝐴)) ∈ ℂ)
2214, 21immul2d 14579 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴)))))
2317, 15, 20divcan2d 11407 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · (𝐴 / (abs‘𝐴))) = 𝐴)
2423fveq2d 6649 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = (ℑ‘𝐴))
2522, 24eqtr3d 2835 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴)))) = (ℑ‘𝐴))
2612, 16, 253brtr4d 5062 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴)))))
27 0re 10632 . . . . . . . . 9 0 ∈ ℝ
2827a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 ∈ ℝ)
2921imcld 14546 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(𝐴 / (abs‘𝐴))) ∈ ℝ)
3028, 29, 19ltmul2d 12461 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(𝐴 / (abs‘𝐴))) ↔ ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℑ‘(𝐴 / (abs‘𝐴))))))
3126, 30mpbird 260 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(𝐴 / (abs‘𝐴))))
32 efiarg 25198 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
338, 32syldan 594 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
3433fveq2d 6649 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))) = (ℑ‘(𝐴 / (abs‘𝐴))))
3531, 34breqtrrd 5058 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
36 resinval 15480 . . . . . 6 ((ℑ‘(log‘𝐴)) ∈ ℝ → (sin‘(ℑ‘(log‘𝐴))) = (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3711, 36syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (sin‘(ℑ‘(log‘𝐴))) = (ℑ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3835, 37breqtrrd 5058 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (sin‘(ℑ‘(log‘𝐴))))
3911resincld 15488 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (sin‘(ℑ‘(log‘𝐴))) ∈ ℝ)
4039lt0neg2d 11199 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (sin‘(ℑ‘(log‘𝐴))) ↔ -(sin‘(ℑ‘(log‘𝐴))) < 0))
4138, 40mpbid 235 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -(sin‘(ℑ‘(log‘𝐴))) < 0)
42 pire 25051 . . . . . . . . . . 11 π ∈ ℝ
43 readdcl 10609 . . . . . . . . . . 11 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘𝐴)) + π) ∈ ℝ)
4411, 42, 43sylancl 589 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) + π) ∈ ℝ)
4544adantr 484 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ∈ ℝ)
46 df-neg 10862 . . . . . . . . . . . 12 -π = (0 − π)
47 logimcl 25161 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
488, 47syldan 594 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
4948simpld 498 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π < (ℑ‘(log‘𝐴)))
5042renegcli 10936 . . . . . . . . . . . . . 14 -π ∈ ℝ
51 ltle 10718 . . . . . . . . . . . . . 14 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5250, 11, 51sylancr 590 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5349, 52mpd 15 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴)))
5446, 53eqbrtrrid 5066 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 − π) ≤ (ℑ‘(log‘𝐴)))
5542a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → π ∈ ℝ)
5628, 55, 11lesubaddd 11226 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((0 − π) ≤ (ℑ‘(log‘𝐴)) ↔ 0 ≤ ((ℑ‘(log‘𝐴)) + π)))
5754, 56mpbid 235 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 ≤ ((ℑ‘(log‘𝐴)) + π))
5857adantr 484 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤ ((ℑ‘(log‘𝐴)) + π))
5911, 28, 55leadd1d 11223 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) ≤ 0 ↔ ((ℑ‘(log‘𝐴)) + π) ≤ (0 + π)))
6059biimpa 480 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ≤ (0 + π))
61 picn 25052 . . . . . . . . . . 11 π ∈ ℂ
6261addid2i 10817 . . . . . . . . . 10 (0 + π) = π
6360, 62breqtrdi 5071 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ≤ π)
6427, 42elicc2i 12791 . . . . . . . . 9 (((ℑ‘(log‘𝐴)) + π) ∈ (0[,]π) ↔ (((ℑ‘(log‘𝐴)) + π) ∈ ℝ ∧ 0 ≤ ((ℑ‘(log‘𝐴)) + π) ∧ ((ℑ‘(log‘𝐴)) + π) ≤ π))
6545, 58, 63, 64syl3anbrc 1340 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → ((ℑ‘(log‘𝐴)) + π) ∈ (0[,]π))
66 sinq12ge0 25101 . . . . . . . 8 (((ℑ‘(log‘𝐴)) + π) ∈ (0[,]π) → 0 ≤ (sin‘((ℑ‘(log‘𝐴)) + π)))
6765, 66syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤ (sin‘((ℑ‘(log‘𝐴)) + π)))
6811recnd 10658 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
69 sinppi 25082 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ ℂ → (sin‘((ℑ‘(log‘𝐴)) + π)) = -(sin‘(ℑ‘(log‘𝐴))))
7068, 69syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (sin‘((ℑ‘(log‘𝐴)) + π)) = -(sin‘(ℑ‘(log‘𝐴))))
7170adantr 484 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → (sin‘((ℑ‘(log‘𝐴)) + π)) = -(sin‘(ℑ‘(log‘𝐴))))
7267, 71breqtrd 5056 . . . . . 6 (((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ 0) → 0 ≤ -(sin‘(ℑ‘(log‘𝐴))))
7372ex 416 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) ≤ 0 → 0 ≤ -(sin‘(ℑ‘(log‘𝐴)))))
7473con3d 155 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (¬ 0 ≤ -(sin‘(ℑ‘(log‘𝐴))) → ¬ (ℑ‘(log‘𝐴)) ≤ 0))
7539renegcld 11056 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -(sin‘(ℑ‘(log‘𝐴))) ∈ ℝ)
76 ltnle 10709 . . . . 5 ((-(sin‘(ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ∈ ℝ) → (-(sin‘(ℑ‘(log‘𝐴))) < 0 ↔ ¬ 0 ≤ -(sin‘(ℑ‘(log‘𝐴)))))
7775, 27, 76sylancl 589 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-(sin‘(ℑ‘(log‘𝐴))) < 0 ↔ ¬ 0 ≤ -(sin‘(ℑ‘(log‘𝐴)))))
78 ltnle 10709 . . . . 5 ((0 ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (0 < (ℑ‘(log‘𝐴)) ↔ ¬ (ℑ‘(log‘𝐴)) ≤ 0))
7927, 11, 78sylancr 590 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐴)) ↔ ¬ (ℑ‘(log‘𝐴)) ≤ 0))
8074, 77, 793imtr4d 297 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-(sin‘(ℑ‘(log‘𝐴))) < 0 → 0 < (ℑ‘(log‘𝐴))))
8141, 80mpd 15 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(log‘𝐴)))
8248simprd 499 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ π)
83 rpre 12385 . . . . . . . . 9 (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
8483renegcld 11056 . . . . . . . 8 (-𝐴 ∈ ℝ+ → --𝐴 ∈ ℝ)
85 negneg 10925 . . . . . . . . . 10 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
8685adantr 484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → --𝐴 = 𝐴)
8786eleq1d 2874 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (--𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
8884, 87syl5ib 247 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-𝐴 ∈ ℝ+𝐴 ∈ ℝ))
89 lognegb 25181 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
908, 89syldan 594 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
91 reim0b 14470 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
9291adantr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
9388, 90, 923imtr3d 296 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) = π → (ℑ‘𝐴) = 0))
9493necon3d 3008 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘𝐴) ≠ 0 → (ℑ‘(log‘𝐴)) ≠ π))
953, 94mpd 15 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ≠ π)
9695necomd 3042 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → π ≠ (ℑ‘(log‘𝐴)))
9711, 55, 82, 96leneltd 10783 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) < π)
98 0xr 10677 . . 3 0 ∈ ℝ*
9942rexri 10688 . . 3 π ∈ ℝ*
100 elioo2 12767 . . 3 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((ℑ‘(log‘𝐴)) ∈ (0(,)π) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ 0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π)))
10198, 99, 100mp2an 691 . 2 ((ℑ‘(log‘𝐴)) ∈ (0(,)π) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ 0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))
10211, 81, 97, 101syl3anbrc 1340 1 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  ici 10528   + caddc 10529   · cmul 10531  *cxr 10663   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  +crp 12377  (,)cioo 12726  [,]cicc 12729  cim 14449  abscabs 14585  expce 15407  sincsin 15409  πcpi 15412  logclog 25146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148
This theorem is referenced by:  argimlt0  25204  logneg2  25206  logcnlem3  25235  atanlogaddlem  25499
  Copyright terms: Public domain W3C validator