MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcaddlem Structured version   Visualization version   GIF version

Theorem pcaddlem 16214
Description: Lemma for pcadd 16215. The original numbers 𝐴 and 𝐵 have been decomposed using the prime count function as (𝑃𝑀) · (𝑅 / 𝑆) where 𝑅, 𝑆 are both not divisible by 𝑃 and 𝑀 = (𝑃 pCnt 𝐴), and similarly for 𝐵. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
pcaddlem.1 (𝜑𝑃 ∈ ℙ)
pcaddlem.2 (𝜑𝐴 = ((𝑃𝑀) · (𝑅 / 𝑆)))
pcaddlem.3 (𝜑𝐵 = ((𝑃𝑁) · (𝑇 / 𝑈)))
pcaddlem.4 (𝜑𝑁 ∈ (ℤ𝑀))
pcaddlem.5 (𝜑 → (𝑅 ∈ ℤ ∧ ¬ 𝑃𝑅))
pcaddlem.6 (𝜑 → (𝑆 ∈ ℕ ∧ ¬ 𝑃𝑆))
pcaddlem.7 (𝜑 → (𝑇 ∈ ℤ ∧ ¬ 𝑃𝑇))
pcaddlem.8 (𝜑 → (𝑈 ∈ ℕ ∧ ¬ 𝑃𝑈))
Assertion
Ref Expression
pcaddlem (𝜑𝑀 ≤ (𝑃 pCnt (𝐴 + 𝐵)))

Proof of Theorem pcaddlem
StepHypRef Expression
1 oveq2 7143 . . 3 ((𝐴 + 𝐵) = 0 → (𝑃 pCnt (𝐴 + 𝐵)) = (𝑃 pCnt 0))
21breq2d 5042 . 2 ((𝐴 + 𝐵) = 0 → (𝑀 ≤ (𝑃 pCnt (𝐴 + 𝐵)) ↔ 𝑀 ≤ (𝑃 pCnt 0)))
3 pcaddlem.4 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzel2 12236 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
53, 4syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
65zred 12075 . . . . 5 (𝜑𝑀 ∈ ℝ)
76adantr 484 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → 𝑀 ∈ ℝ)
8 pcaddlem.1 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℙ)
9 prmnn 16008 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
108, 9syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
1110nncnd 11641 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℂ)
1210nnne0d 11675 . . . . . . . . . . . 12 (𝜑𝑃 ≠ 0)
13 eluzelz 12241 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
143, 13syl 17 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
1514, 5zsubcld 12080 . . . . . . . . . . . 12 (𝜑 → (𝑁𝑀) ∈ ℤ)
1611, 12, 15expclzd 13511 . . . . . . . . . . 11 (𝜑 → (𝑃↑(𝑁𝑀)) ∈ ℂ)
17 pcaddlem.7 . . . . . . . . . . . . 13 (𝜑 → (𝑇 ∈ ℤ ∧ ¬ 𝑃𝑇))
1817simpld 498 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℤ)
1918zcnd 12076 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
20 pcaddlem.8 . . . . . . . . . . . . 13 (𝜑 → (𝑈 ∈ ℕ ∧ ¬ 𝑃𝑈))
2120simpld 498 . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℕ)
2221nncnd 11641 . . . . . . . . . . 11 (𝜑𝑈 ∈ ℂ)
2321nnne0d 11675 . . . . . . . . . . 11 (𝜑𝑈 ≠ 0)
2416, 19, 22, 23divassd 11440 . . . . . . . . . 10 (𝜑 → (((𝑃↑(𝑁𝑀)) · 𝑇) / 𝑈) = ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))
2524oveq2d 7151 . . . . . . . . 9 (𝜑 → ((𝑅 / 𝑆) + (((𝑃↑(𝑁𝑀)) · 𝑇) / 𝑈)) = ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))
26 pcaddlem.5 . . . . . . . . . . . 12 (𝜑 → (𝑅 ∈ ℤ ∧ ¬ 𝑃𝑅))
2726simpld 498 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℤ)
2827zcnd 12076 . . . . . . . . . 10 (𝜑𝑅 ∈ ℂ)
29 pcaddlem.6 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∈ ℕ ∧ ¬ 𝑃𝑆))
3029simpld 498 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℕ)
3130nncnd 11641 . . . . . . . . . 10 (𝜑𝑆 ∈ ℂ)
3216, 19mulcld 10650 . . . . . . . . . 10 (𝜑 → ((𝑃↑(𝑁𝑀)) · 𝑇) ∈ ℂ)
3330nnne0d 11675 . . . . . . . . . 10 (𝜑𝑆 ≠ 0)
3428, 31, 32, 22, 33, 23divadddivd 11449 . . . . . . . . 9 (𝜑 → ((𝑅 / 𝑆) + (((𝑃↑(𝑁𝑀)) · 𝑇) / 𝑈)) = (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)))
3525, 34eqtr3d 2835 . . . . . . . 8 (𝜑 → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) = (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)))
3635oveq2d 7151 . . . . . . 7 (𝜑 → (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = (𝑃 pCnt (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈))))
3736adantr 484 . . . . . 6 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = (𝑃 pCnt (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈))))
388adantr 484 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → 𝑃 ∈ ℙ)
3921nnzd 12074 . . . . . . . . . 10 (𝜑𝑈 ∈ ℤ)
4027, 39zmulcld 12081 . . . . . . . . 9 (𝜑 → (𝑅 · 𝑈) ∈ ℤ)
41 uznn0sub 12265 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
423, 41syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝑀) ∈ ℕ0)
4310, 42nnexpcld 13602 . . . . . . . . . . . 12 (𝜑 → (𝑃↑(𝑁𝑀)) ∈ ℕ)
4443nnzd 12074 . . . . . . . . . . 11 (𝜑 → (𝑃↑(𝑁𝑀)) ∈ ℤ)
4544, 18zmulcld 12081 . . . . . . . . . 10 (𝜑 → ((𝑃↑(𝑁𝑀)) · 𝑇) ∈ ℤ)
4630nnzd 12074 . . . . . . . . . 10 (𝜑𝑆 ∈ ℤ)
4745, 46zmulcld 12081 . . . . . . . . 9 (𝜑 → (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆) ∈ ℤ)
4840, 47zaddcld 12079 . . . . . . . 8 (𝜑 → ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ∈ ℤ)
4948adantr 484 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ∈ ℤ)
5011, 12, 5expclzd 13511 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑀) ∈ ℂ)
5150mul01d 10828 . . . . . . . . . . . 12 (𝜑 → ((𝑃𝑀) · 0) = 0)
52 oveq2 7143 . . . . . . . . . . . . 13 (((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) = 0 → ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = ((𝑃𝑀) · 0))
5352eqeq1d 2800 . . . . . . . . . . . 12 (((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) = 0 → (((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = 0 ↔ ((𝑃𝑀) · 0) = 0))
5451, 53syl5ibrcom 250 . . . . . . . . . . 11 (𝜑 → (((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) = 0 → ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = 0))
5554necon3d 3008 . . . . . . . . . 10 (𝜑 → (((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) ≠ 0 → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ≠ 0))
5628, 31, 33divcld 11405 . . . . . . . . . . . . 13 (𝜑 → (𝑅 / 𝑆) ∈ ℂ)
5719, 22, 23divcld 11405 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 / 𝑈) ∈ ℂ)
5816, 57mulcld 10650 . . . . . . . . . . . . 13 (𝜑 → ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)) ∈ ℂ)
5950, 56, 58adddid 10654 . . . . . . . . . . . 12 (𝜑 → ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = (((𝑃𝑀) · (𝑅 / 𝑆)) + ((𝑃𝑀) · ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))))
60 pcaddlem.2 . . . . . . . . . . . . 13 (𝜑𝐴 = ((𝑃𝑀) · (𝑅 / 𝑆)))
61 pcaddlem.3 . . . . . . . . . . . . . 14 (𝜑𝐵 = ((𝑃𝑁) · (𝑇 / 𝑈)))
625zcnd 12076 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℂ)
6314zcnd 12076 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℂ)
6462, 63pncan3d 10989 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + (𝑁𝑀)) = 𝑁)
6564oveq2d 7151 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃↑(𝑀 + (𝑁𝑀))) = (𝑃𝑁))
66 expaddz 13469 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ)) → (𝑃↑(𝑀 + (𝑁𝑀))) = ((𝑃𝑀) · (𝑃↑(𝑁𝑀))))
6711, 12, 5, 15, 66syl22anc 837 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃↑(𝑀 + (𝑁𝑀))) = ((𝑃𝑀) · (𝑃↑(𝑁𝑀))))
6865, 67eqtr3d 2835 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃𝑁) = ((𝑃𝑀) · (𝑃↑(𝑁𝑀))))
6968oveq1d 7150 . . . . . . . . . . . . . 14 (𝜑 → ((𝑃𝑁) · (𝑇 / 𝑈)) = (((𝑃𝑀) · (𝑃↑(𝑁𝑀))) · (𝑇 / 𝑈)))
7050, 16, 57mulassd 10653 . . . . . . . . . . . . . 14 (𝜑 → (((𝑃𝑀) · (𝑃↑(𝑁𝑀))) · (𝑇 / 𝑈)) = ((𝑃𝑀) · ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))
7161, 69, 703eqtrd 2837 . . . . . . . . . . . . 13 (𝜑𝐵 = ((𝑃𝑀) · ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))
7260, 71oveq12d 7153 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐵) = (((𝑃𝑀) · (𝑅 / 𝑆)) + ((𝑃𝑀) · ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))))
7359, 72eqtr4d 2836 . . . . . . . . . . 11 (𝜑 → ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = (𝐴 + 𝐵))
7473neeq1d 3046 . . . . . . . . . 10 (𝜑 → (((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) ≠ 0 ↔ (𝐴 + 𝐵) ≠ 0))
7535neeq1d 3046 . . . . . . . . . 10 (𝜑 → (((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ≠ 0 ↔ (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) ≠ 0))
7655, 74, 753imtr3d 296 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) ≠ 0 → (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) ≠ 0))
7730, 21nnmulcld 11678 . . . . . . . . . . . . 13 (𝜑 → (𝑆 · 𝑈) ∈ ℕ)
7877nncnd 11641 . . . . . . . . . . . 12 (𝜑 → (𝑆 · 𝑈) ∈ ℂ)
7977nnne0d 11675 . . . . . . . . . . . 12 (𝜑 → (𝑆 · 𝑈) ≠ 0)
8078, 79div0d 11404 . . . . . . . . . . 11 (𝜑 → (0 / (𝑆 · 𝑈)) = 0)
81 oveq1 7142 . . . . . . . . . . . 12 (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) = 0 → (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) = (0 / (𝑆 · 𝑈)))
8281eqeq1d 2800 . . . . . . . . . . 11 (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) = 0 → ((((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) = 0 ↔ (0 / (𝑆 · 𝑈)) = 0))
8380, 82syl5ibrcom 250 . . . . . . . . . 10 (𝜑 → (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) = 0 → (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) = 0))
8483necon3d 3008 . . . . . . . . 9 (𝜑 → ((((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) ≠ 0 → ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ≠ 0))
8576, 84syld 47 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵) ≠ 0 → ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ≠ 0))
8685imp 410 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ≠ 0)
8777adantr 484 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑆 · 𝑈) ∈ ℕ)
88 pcdiv 16179 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ∈ ℤ ∧ ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ≠ 0) ∧ (𝑆 · 𝑈) ∈ ℕ) → (𝑃 pCnt (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈))) = ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − (𝑃 pCnt (𝑆 · 𝑈))))
8938, 49, 86, 87, 88syl121anc 1372 . . . . . 6 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈))) = ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − (𝑃 pCnt (𝑆 · 𝑈))))
90 pcmul 16178 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑆 ∈ ℤ ∧ 𝑆 ≠ 0) ∧ (𝑈 ∈ ℤ ∧ 𝑈 ≠ 0)) → (𝑃 pCnt (𝑆 · 𝑈)) = ((𝑃 pCnt 𝑆) + (𝑃 pCnt 𝑈)))
918, 46, 33, 39, 23, 90syl122anc 1376 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (𝑆 · 𝑈)) = ((𝑃 pCnt 𝑆) + (𝑃 pCnt 𝑈)))
9229simprd 499 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑃𝑆)
93 pceq0 16197 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑆 ∈ ℕ) → ((𝑃 pCnt 𝑆) = 0 ↔ ¬ 𝑃𝑆))
948, 30, 93syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 pCnt 𝑆) = 0 ↔ ¬ 𝑃𝑆))
9592, 94mpbird 260 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt 𝑆) = 0)
9620simprd 499 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑃𝑈)
97 pceq0 16197 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑈 ∈ ℕ) → ((𝑃 pCnt 𝑈) = 0 ↔ ¬ 𝑃𝑈))
988, 21, 97syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 pCnt 𝑈) = 0 ↔ ¬ 𝑃𝑈))
9996, 98mpbird 260 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt 𝑈) = 0)
10095, 99oveq12d 7153 . . . . . . . . . . 11 (𝜑 → ((𝑃 pCnt 𝑆) + (𝑃 pCnt 𝑈)) = (0 + 0))
101 00id 10804 . . . . . . . . . . 11 (0 + 0) = 0
102100, 101eqtrdi 2849 . . . . . . . . . 10 (𝜑 → ((𝑃 pCnt 𝑆) + (𝑃 pCnt 𝑈)) = 0)
10391, 102eqtrd 2833 . . . . . . . . 9 (𝜑 → (𝑃 pCnt (𝑆 · 𝑈)) = 0)
104103oveq2d 7151 . . . . . . . 8 (𝜑 → ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − (𝑃 pCnt (𝑆 · 𝑈))) = ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − 0))
105104adantr 484 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − (𝑃 pCnt (𝑆 · 𝑈))) = ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − 0))
106 pczcl 16175 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ∈ ℤ ∧ ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ≠ 0)) → (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) ∈ ℕ0)
10738, 49, 86, 106syl12anc 835 . . . . . . . . 9 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) ∈ ℕ0)
108107nn0cnd 11945 . . . . . . . 8 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) ∈ ℂ)
109108subid1d 10975 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − 0) = (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))))
110105, 109eqtrd 2833 . . . . . 6 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − (𝑃 pCnt (𝑆 · 𝑈))) = (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))))
11137, 89, 1103eqtrd 2837 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))))
112111, 107eqeltrd 2890 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) ∈ ℕ0)
113 nn0addge1 11931 . . . 4 ((𝑀 ∈ ℝ ∧ (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) ∈ ℕ0) → 𝑀 ≤ (𝑀 + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
1147, 112, 113syl2anc 587 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → 𝑀 ≤ (𝑀 + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
115 nnq 12349 . . . . . . . 8 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
11610, 115syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℚ)
117 qexpclz 13446 . . . . . . 7 ((𝑃 ∈ ℚ ∧ 𝑃 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝑃𝑀) ∈ ℚ)
118116, 12, 5, 117syl3anc 1368 . . . . . 6 (𝜑 → (𝑃𝑀) ∈ ℚ)
119118adantr 484 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃𝑀) ∈ ℚ)
12011, 12, 5expne0d 13512 . . . . . 6 (𝜑 → (𝑃𝑀) ≠ 0)
121120adantr 484 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃𝑀) ≠ 0)
122 znq 12340 . . . . . . . 8 ((𝑅 ∈ ℤ ∧ 𝑆 ∈ ℕ) → (𝑅 / 𝑆) ∈ ℚ)
12327, 30, 122syl2anc 587 . . . . . . 7 (𝜑 → (𝑅 / 𝑆) ∈ ℚ)
124 qexpclz 13446 . . . . . . . . 9 ((𝑃 ∈ ℚ ∧ 𝑃 ≠ 0 ∧ (𝑁𝑀) ∈ ℤ) → (𝑃↑(𝑁𝑀)) ∈ ℚ)
125116, 12, 15, 124syl3anc 1368 . . . . . . . 8 (𝜑 → (𝑃↑(𝑁𝑀)) ∈ ℚ)
126 znq 12340 . . . . . . . . 9 ((𝑇 ∈ ℤ ∧ 𝑈 ∈ ℕ) → (𝑇 / 𝑈) ∈ ℚ)
12718, 21, 126syl2anc 587 . . . . . . . 8 (𝜑 → (𝑇 / 𝑈) ∈ ℚ)
128 qmulcl 12354 . . . . . . . 8 (((𝑃↑(𝑁𝑀)) ∈ ℚ ∧ (𝑇 / 𝑈) ∈ ℚ) → ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)) ∈ ℚ)
129125, 127, 128syl2anc 587 . . . . . . 7 (𝜑 → ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)) ∈ ℚ)
130 qaddcl 12352 . . . . . . 7 (((𝑅 / 𝑆) ∈ ℚ ∧ ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)) ∈ ℚ) → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ∈ ℚ)
131123, 129, 130syl2anc 587 . . . . . 6 (𝜑 → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ∈ ℚ)
132131adantr 484 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ∈ ℚ)
13374, 55sylbird 263 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) ≠ 0 → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ≠ 0))
134133imp 410 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ≠ 0)
135 pcqmul 16180 . . . . 5 ((𝑃 ∈ ℙ ∧ ((𝑃𝑀) ∈ ℚ ∧ (𝑃𝑀) ≠ 0) ∧ (((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ∈ ℚ ∧ ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ≠ 0)) → (𝑃 pCnt ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = ((𝑃 pCnt (𝑃𝑀)) + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
13638, 119, 121, 132, 134, 135syl122anc 1376 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = ((𝑃 pCnt (𝑃𝑀)) + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
13773oveq2d 7151 . . . . 5 (𝜑 → (𝑃 pCnt ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = (𝑃 pCnt (𝐴 + 𝐵)))
138137adantr 484 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = (𝑃 pCnt (𝐴 + 𝐵)))
139 pcid 16199 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ) → (𝑃 pCnt (𝑃𝑀)) = 𝑀)
1408, 5, 139syl2anc 587 . . . . . 6 (𝜑 → (𝑃 pCnt (𝑃𝑀)) = 𝑀)
141140oveq1d 7150 . . . . 5 (𝜑 → ((𝑃 pCnt (𝑃𝑀)) + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = (𝑀 + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
142141adantr 484 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑃 pCnt (𝑃𝑀)) + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = (𝑀 + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
143136, 138, 1423eqtr3d 2841 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt (𝐴 + 𝐵)) = (𝑀 + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
144114, 143breqtrrd 5058 . 2 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → 𝑀 ≤ (𝑃 pCnt (𝐴 + 𝐵)))
1456rexrd 10680 . . . 4 (𝜑𝑀 ∈ ℝ*)
146 pnfge 12513 . . . 4 (𝑀 ∈ ℝ*𝑀 ≤ +∞)
147145, 146syl 17 . . 3 (𝜑𝑀 ≤ +∞)
148 pc0 16181 . . . 4 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)
1498, 148syl 17 . . 3 (𝜑 → (𝑃 pCnt 0) = +∞)
150147, 149breqtrrd 5058 . 2 (𝜑𝑀 ≤ (𝑃 pCnt 0))
1512, 144, 150pm2.61ne 3072 1 (𝜑𝑀 ≤ (𝑃 pCnt (𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526   + caddc 10529   · cmul 10531  +∞cpnf 10661  *cxr 10663  cle 10665  cmin 10859   / cdiv 11286  cn 11625  0cn0 11885  cz 11969  cuz 12231  cq 12336  cexp 13425  cdvds 15599  cprime 16005   pCnt cpc 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164
This theorem is referenced by:  pcadd  16215
  Copyright terms: Public domain W3C validator