MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcj Structured version   Visualization version   GIF version

Theorem logcj 26515
Description: The natural logarithm distributes under conjugation away from the branch cut. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
logcj ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (log‘(∗‘𝐴)) = (∗‘(log‘𝐴)))

Proof of Theorem logcj
StepHypRef Expression
1 fveq2 6858 . . . . . . 7 (𝐴 = 0 → (ℑ‘𝐴) = (ℑ‘0))
2 im0 15119 . . . . . . 7 (ℑ‘0) = 0
31, 2eqtrdi 2780 . . . . . 6 (𝐴 = 0 → (ℑ‘𝐴) = 0)
43necon3i 2957 . . . . 5 ((ℑ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
5 logcl 26477 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
64, 5sylan2 593 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (log‘𝐴) ∈ ℂ)
7 efcj 16058 . . . 4 ((log‘𝐴) ∈ ℂ → (exp‘(∗‘(log‘𝐴))) = (∗‘(exp‘(log‘𝐴))))
86, 7syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (exp‘(∗‘(log‘𝐴))) = (∗‘(exp‘(log‘𝐴))))
9 eflog 26485 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
104, 9sylan2 593 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
1110fveq2d 6862 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘(exp‘(log‘𝐴))) = (∗‘𝐴))
128, 11eqtrd 2764 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (exp‘(∗‘(log‘𝐴))) = (∗‘𝐴))
13 cjcl 15071 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
1413adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘𝐴) ∈ ℂ)
15 simpr 484 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘𝐴) ≠ 0)
1615, 4syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → 𝐴 ≠ 0)
17 cjne0 15129 . . . . 5 (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0))
1817adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0))
1916, 18mpbid 232 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘𝐴) ≠ 0)
206cjcld 15162 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘(log‘𝐴)) ∈ ℂ)
216imcld 15161 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
22 pire 26366 . . . . . . . 8 π ∈ ℝ
2322a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → π ∈ ℝ)
24 logimcl 26478 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
254, 24sylan2 593 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
2625simprd 495 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ≤ π)
27 rpre 12960 . . . . . . . . . . . . 13 (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
2827renegcld 11605 . . . . . . . . . . . 12 (-𝐴 ∈ ℝ+ → --𝐴 ∈ ℝ)
29 negneg 11472 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
3029adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → --𝐴 = 𝐴)
3130eleq1d 2813 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (--𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
3228, 31imbitrid 244 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-𝐴 ∈ ℝ+𝐴 ∈ ℝ))
33 lognegb 26499 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
344, 33sylan2 593 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
35 reim0b 15085 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
3635adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
3732, 34, 363imtr3d 293 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → ((ℑ‘(log‘𝐴)) = π → (ℑ‘𝐴) = 0))
3837necon3d 2946 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → ((ℑ‘𝐴) ≠ 0 → (ℑ‘(log‘𝐴)) ≠ π))
3915, 38mpd 15 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ≠ π)
4039necomd 2980 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → π ≠ (ℑ‘(log‘𝐴)))
4121, 23, 26, 40leneltd 11328 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) < π)
42 ltneg 11678 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘𝐴)) < π ↔ -π < -(ℑ‘(log‘𝐴))))
4321, 22, 42sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → ((ℑ‘(log‘𝐴)) < π ↔ -π < -(ℑ‘(log‘𝐴))))
4441, 43mpbid 232 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -π < -(ℑ‘(log‘𝐴)))
456imcjd 15171 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(∗‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)))
4644, 45breqtrrd 5135 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -π < (ℑ‘(∗‘(log‘𝐴))))
4725simpld 494 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -π < (ℑ‘(log‘𝐴)))
4822renegcli 11483 . . . . . . . 8 -π ∈ ℝ
49 ltle 11262 . . . . . . . 8 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5048, 21, 49sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5147, 50mpd 15 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -π ≤ (ℑ‘(log‘𝐴)))
52 lenegcon1 11682 . . . . . . 7 ((π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π ≤ (ℑ‘(log‘𝐴)) ↔ -(ℑ‘(log‘𝐴)) ≤ π))
5322, 21, 52sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-π ≤ (ℑ‘(log‘𝐴)) ↔ -(ℑ‘(log‘𝐴)) ≤ π))
5451, 53mpbid 232 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -(ℑ‘(log‘𝐴)) ≤ π)
5545, 54eqbrtrd 5129 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(∗‘(log‘𝐴))) ≤ π)
56 ellogrn 26468 . . . 4 ((∗‘(log‘𝐴)) ∈ ran log ↔ ((∗‘(log‘𝐴)) ∈ ℂ ∧ -π < (ℑ‘(∗‘(log‘𝐴))) ∧ (ℑ‘(∗‘(log‘𝐴))) ≤ π))
5720, 46, 55, 56syl3anbrc 1344 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘(log‘𝐴)) ∈ ran log)
58 logeftb 26492 . . 3 (((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐴) ≠ 0 ∧ (∗‘(log‘𝐴)) ∈ ran log) → ((log‘(∗‘𝐴)) = (∗‘(log‘𝐴)) ↔ (exp‘(∗‘(log‘𝐴))) = (∗‘𝐴)))
5914, 19, 57, 58syl3anc 1373 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → ((log‘(∗‘𝐴)) = (∗‘(log‘𝐴)) ↔ (exp‘(∗‘(log‘𝐴))) = (∗‘𝐴)))
6012, 59mpbird 257 1 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (log‘(∗‘𝐴)) = (∗‘(log‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  ran crn 5639  cfv 6511  cc 11066  cr 11067  0cc0 11068   < clt 11208  cle 11209  -cneg 11406  +crp 12951  ccj 15062  cim 15064  expce 16027  πcpi 16032  logclog 26463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465
This theorem is referenced by:  argimlt0  26522  isosctrlem2  26729  atancj  26820  argcj  32672
  Copyright terms: Public domain W3C validator