MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcj Structured version   Visualization version   GIF version

Theorem logcj 25121
Description: The natural logarithm distributes under conjugation away from the branch cut. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
logcj ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (log‘(∗‘𝐴)) = (∗‘(log‘𝐴)))

Proof of Theorem logcj
StepHypRef Expression
1 fveq2 6669 . . . . . . 7 (𝐴 = 0 → (ℑ‘𝐴) = (ℑ‘0))
2 im0 14507 . . . . . . 7 (ℑ‘0) = 0
31, 2syl6eq 2877 . . . . . 6 (𝐴 = 0 → (ℑ‘𝐴) = 0)
43necon3i 3053 . . . . 5 ((ℑ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
5 logcl 25084 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
64, 5sylan2 592 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (log‘𝐴) ∈ ℂ)
7 efcj 15440 . . . 4 ((log‘𝐴) ∈ ℂ → (exp‘(∗‘(log‘𝐴))) = (∗‘(exp‘(log‘𝐴))))
86, 7syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (exp‘(∗‘(log‘𝐴))) = (∗‘(exp‘(log‘𝐴))))
9 eflog 25092 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
104, 9sylan2 592 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
1110fveq2d 6673 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘(exp‘(log‘𝐴))) = (∗‘𝐴))
128, 11eqtrd 2861 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (exp‘(∗‘(log‘𝐴))) = (∗‘𝐴))
13 cjcl 14459 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
1413adantr 481 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘𝐴) ∈ ℂ)
15 simpr 485 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘𝐴) ≠ 0)
1615, 4syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → 𝐴 ≠ 0)
17 cjne0 14517 . . . . 5 (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0))
1817adantr 481 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0))
1916, 18mpbid 233 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘𝐴) ≠ 0)
206cjcld 14550 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘(log‘𝐴)) ∈ ℂ)
216imcld 14549 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
22 pire 24978 . . . . . . . 8 π ∈ ℝ
2322a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → π ∈ ℝ)
24 logimcl 25085 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
254, 24sylan2 592 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
2625simprd 496 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ≤ π)
27 rpre 12392 . . . . . . . . . . . . 13 (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
2827renegcld 11061 . . . . . . . . . . . 12 (-𝐴 ∈ ℝ+ → --𝐴 ∈ ℝ)
29 negneg 10930 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
3029adantr 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → --𝐴 = 𝐴)
3130eleq1d 2902 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (--𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
3228, 31syl5ib 245 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-𝐴 ∈ ℝ+𝐴 ∈ ℝ))
33 lognegb 25105 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
344, 33sylan2 592 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
35 reim0b 14473 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
3635adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
3732, 34, 363imtr3d 294 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → ((ℑ‘(log‘𝐴)) = π → (ℑ‘𝐴) = 0))
3837necon3d 3042 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → ((ℑ‘𝐴) ≠ 0 → (ℑ‘(log‘𝐴)) ≠ π))
3915, 38mpd 15 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ≠ π)
4039necomd 3076 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → π ≠ (ℑ‘(log‘𝐴)))
4121, 23, 26, 40leneltd 10788 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) < π)
42 ltneg 11134 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘𝐴)) < π ↔ -π < -(ℑ‘(log‘𝐴))))
4321, 22, 42sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → ((ℑ‘(log‘𝐴)) < π ↔ -π < -(ℑ‘(log‘𝐴))))
4441, 43mpbid 233 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -π < -(ℑ‘(log‘𝐴)))
456imcjd 14559 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(∗‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)))
4644, 45breqtrrd 5091 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -π < (ℑ‘(∗‘(log‘𝐴))))
4725simpld 495 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -π < (ℑ‘(log‘𝐴)))
4822renegcli 10941 . . . . . . . 8 -π ∈ ℝ
49 ltle 10723 . . . . . . . 8 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5048, 21, 49sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5147, 50mpd 15 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -π ≤ (ℑ‘(log‘𝐴)))
52 lenegcon1 11138 . . . . . . 7 ((π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π ≤ (ℑ‘(log‘𝐴)) ↔ -(ℑ‘(log‘𝐴)) ≤ π))
5322, 21, 52sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-π ≤ (ℑ‘(log‘𝐴)) ↔ -(ℑ‘(log‘𝐴)) ≤ π))
5451, 53mpbid 233 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -(ℑ‘(log‘𝐴)) ≤ π)
5545, 54eqbrtrd 5085 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(∗‘(log‘𝐴))) ≤ π)
56 ellogrn 25075 . . . 4 ((∗‘(log‘𝐴)) ∈ ran log ↔ ((∗‘(log‘𝐴)) ∈ ℂ ∧ -π < (ℑ‘(∗‘(log‘𝐴))) ∧ (ℑ‘(∗‘(log‘𝐴))) ≤ π))
5720, 46, 55, 56syl3anbrc 1337 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘(log‘𝐴)) ∈ ran log)
58 logeftb 25099 . . 3 (((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐴) ≠ 0 ∧ (∗‘(log‘𝐴)) ∈ ran log) → ((log‘(∗‘𝐴)) = (∗‘(log‘𝐴)) ↔ (exp‘(∗‘(log‘𝐴))) = (∗‘𝐴)))
5914, 19, 57, 58syl3anc 1365 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → ((log‘(∗‘𝐴)) = (∗‘(log‘𝐴)) ↔ (exp‘(∗‘(log‘𝐴))) = (∗‘𝐴)))
6012, 59mpbird 258 1 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (log‘(∗‘𝐴)) = (∗‘(log‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wne 3021   class class class wbr 5063  ran crn 5555  cfv 6354  cc 10529  cr 10530  0cc0 10531   < clt 10669  cle 10670  -cneg 10865  +crp 12384  ccj 14450  cim 14452  expce 15410  πcpi 15415  logclog 25070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-map 8403  df-pm 8404  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ioc 12738  df-ico 12739  df-icc 12740  df-fz 12888  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13425  df-fac 13629  df-bc 13658  df-hash 13686  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-sin 15418  df-cos 15419  df-pi 15421  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18170  df-cntz 18392  df-cmn 18844  df-psmet 20472  df-xmet 20473  df-met 20474  df-bl 20475  df-mopn 20476  df-fbas 20477  df-fg 20478  df-cnfld 20481  df-top 21437  df-topon 21454  df-topsp 21476  df-bases 21489  df-cld 21562  df-ntr 21563  df-cls 21564  df-nei 21641  df-lp 21679  df-perf 21680  df-cn 21770  df-cnp 21771  df-haus 21858  df-tx 22105  df-hmeo 22298  df-fil 22389  df-fm 22481  df-flim 22482  df-flf 22483  df-xms 22864  df-ms 22865  df-tms 22866  df-cncf 23420  df-limc 24398  df-dv 24399  df-log 25072
This theorem is referenced by:  argimlt0  25128  isosctrlem2  25329  atancj  25420
  Copyright terms: Public domain W3C validator