MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcj Structured version   Visualization version   GIF version

Theorem logcj 26648
Description: The natural logarithm distributes under conjugation away from the branch cut. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
logcj ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (log‘(∗‘𝐴)) = (∗‘(log‘𝐴)))

Proof of Theorem logcj
StepHypRef Expression
1 fveq2 6906 . . . . . . 7 (𝐴 = 0 → (ℑ‘𝐴) = (ℑ‘0))
2 im0 15192 . . . . . . 7 (ℑ‘0) = 0
31, 2eqtrdi 2793 . . . . . 6 (𝐴 = 0 → (ℑ‘𝐴) = 0)
43necon3i 2973 . . . . 5 ((ℑ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
5 logcl 26610 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
64, 5sylan2 593 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (log‘𝐴) ∈ ℂ)
7 efcj 16128 . . . 4 ((log‘𝐴) ∈ ℂ → (exp‘(∗‘(log‘𝐴))) = (∗‘(exp‘(log‘𝐴))))
86, 7syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (exp‘(∗‘(log‘𝐴))) = (∗‘(exp‘(log‘𝐴))))
9 eflog 26618 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
104, 9sylan2 593 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
1110fveq2d 6910 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘(exp‘(log‘𝐴))) = (∗‘𝐴))
128, 11eqtrd 2777 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (exp‘(∗‘(log‘𝐴))) = (∗‘𝐴))
13 cjcl 15144 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
1413adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘𝐴) ∈ ℂ)
15 simpr 484 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘𝐴) ≠ 0)
1615, 4syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → 𝐴 ≠ 0)
17 cjne0 15202 . . . . 5 (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0))
1817adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0))
1916, 18mpbid 232 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘𝐴) ≠ 0)
206cjcld 15235 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘(log‘𝐴)) ∈ ℂ)
216imcld 15234 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
22 pire 26500 . . . . . . . 8 π ∈ ℝ
2322a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → π ∈ ℝ)
24 logimcl 26611 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
254, 24sylan2 593 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
2625simprd 495 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ≤ π)
27 rpre 13043 . . . . . . . . . . . . 13 (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
2827renegcld 11690 . . . . . . . . . . . 12 (-𝐴 ∈ ℝ+ → --𝐴 ∈ ℝ)
29 negneg 11559 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
3029adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → --𝐴 = 𝐴)
3130eleq1d 2826 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (--𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
3228, 31imbitrid 244 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-𝐴 ∈ ℝ+𝐴 ∈ ℝ))
33 lognegb 26632 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
344, 33sylan2 593 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
35 reim0b 15158 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
3635adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
3732, 34, 363imtr3d 293 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → ((ℑ‘(log‘𝐴)) = π → (ℑ‘𝐴) = 0))
3837necon3d 2961 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → ((ℑ‘𝐴) ≠ 0 → (ℑ‘(log‘𝐴)) ≠ π))
3915, 38mpd 15 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ≠ π)
4039necomd 2996 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → π ≠ (ℑ‘(log‘𝐴)))
4121, 23, 26, 40leneltd 11415 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) < π)
42 ltneg 11763 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘𝐴)) < π ↔ -π < -(ℑ‘(log‘𝐴))))
4321, 22, 42sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → ((ℑ‘(log‘𝐴)) < π ↔ -π < -(ℑ‘(log‘𝐴))))
4441, 43mpbid 232 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -π < -(ℑ‘(log‘𝐴)))
456imcjd 15244 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(∗‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)))
4644, 45breqtrrd 5171 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -π < (ℑ‘(∗‘(log‘𝐴))))
4725simpld 494 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -π < (ℑ‘(log‘𝐴)))
4822renegcli 11570 . . . . . . . 8 -π ∈ ℝ
49 ltle 11349 . . . . . . . 8 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5048, 21, 49sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5147, 50mpd 15 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -π ≤ (ℑ‘(log‘𝐴)))
52 lenegcon1 11767 . . . . . . 7 ((π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π ≤ (ℑ‘(log‘𝐴)) ↔ -(ℑ‘(log‘𝐴)) ≤ π))
5322, 21, 52sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (-π ≤ (ℑ‘(log‘𝐴)) ↔ -(ℑ‘(log‘𝐴)) ≤ π))
5451, 53mpbid 232 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → -(ℑ‘(log‘𝐴)) ≤ π)
5545, 54eqbrtrd 5165 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (ℑ‘(∗‘(log‘𝐴))) ≤ π)
56 ellogrn 26601 . . . 4 ((∗‘(log‘𝐴)) ∈ ran log ↔ ((∗‘(log‘𝐴)) ∈ ℂ ∧ -π < (ℑ‘(∗‘(log‘𝐴))) ∧ (ℑ‘(∗‘(log‘𝐴))) ≤ π))
5720, 46, 55, 56syl3anbrc 1344 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (∗‘(log‘𝐴)) ∈ ran log)
58 logeftb 26625 . . 3 (((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐴) ≠ 0 ∧ (∗‘(log‘𝐴)) ∈ ran log) → ((log‘(∗‘𝐴)) = (∗‘(log‘𝐴)) ↔ (exp‘(∗‘(log‘𝐴))) = (∗‘𝐴)))
5914, 19, 57, 58syl3anc 1373 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → ((log‘(∗‘𝐴)) = (∗‘(log‘𝐴)) ↔ (exp‘(∗‘(log‘𝐴))) = (∗‘𝐴)))
6012, 59mpbird 257 1 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (log‘(∗‘𝐴)) = (∗‘(log‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  ran crn 5686  cfv 6561  cc 11153  cr 11154  0cc0 11155   < clt 11295  cle 11296  -cneg 11493  +crp 13034  ccj 15135  cim 15137  expce 16097  πcpi 16102  logclog 26596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598
This theorem is referenced by:  argimlt0  26655  isosctrlem2  26862  atancj  26953
  Copyright terms: Public domain W3C validator