Proof of Theorem logcj
Step | Hyp | Ref
| Expression |
1 | | fveq2 6664 |
. . . . . . 7
⊢ (𝐴 = 0 → (ℑ‘𝐴) =
(ℑ‘0)) |
2 | | im0 14574 |
. . . . . . 7
⊢
(ℑ‘0) = 0 |
3 | 1, 2 | eqtrdi 2810 |
. . . . . 6
⊢ (𝐴 = 0 → (ℑ‘𝐴) = 0) |
4 | 3 | necon3i 2984 |
. . . . 5
⊢
((ℑ‘𝐴)
≠ 0 → 𝐴 ≠
0) |
5 | | logcl 25274 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈
ℂ) |
6 | 4, 5 | sylan2 595 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (log‘𝐴) ∈
ℂ) |
7 | | efcj 15507 |
. . . 4
⊢
((log‘𝐴)
∈ ℂ → (exp‘(∗‘(log‘𝐴))) =
(∗‘(exp‘(log‘𝐴)))) |
8 | 6, 7 | syl 17 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (exp‘(∗‘(log‘𝐴))) =
(∗‘(exp‘(log‘𝐴)))) |
9 | | eflog 25282 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(exp‘(log‘𝐴)) =
𝐴) |
10 | 4, 9 | sylan2 595 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (exp‘(log‘𝐴)) = 𝐴) |
11 | 10 | fveq2d 6668 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (∗‘(exp‘(log‘𝐴))) = (∗‘𝐴)) |
12 | 8, 11 | eqtrd 2794 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (exp‘(∗‘(log‘𝐴))) = (∗‘𝐴)) |
13 | | cjcl 14526 |
. . . 4
⊢ (𝐴 ∈ ℂ →
(∗‘𝐴) ∈
ℂ) |
14 | 13 | adantr 484 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (∗‘𝐴)
∈ ℂ) |
15 | | simpr 488 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (ℑ‘𝐴)
≠ 0) |
16 | 15, 4 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ 𝐴 ≠
0) |
17 | | cjne0 14584 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔
(∗‘𝐴) ≠
0)) |
18 | 17 | adantr 484 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (𝐴 ≠ 0 ↔
(∗‘𝐴) ≠
0)) |
19 | 16, 18 | mpbid 235 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (∗‘𝐴)
≠ 0) |
20 | 6 | cjcld 14617 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (∗‘(log‘𝐴)) ∈ ℂ) |
21 | 6 | imcld 14616 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (ℑ‘(log‘𝐴)) ∈ ℝ) |
22 | | pire 25165 |
. . . . . . . 8
⊢ π
∈ ℝ |
23 | 22 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ π ∈ ℝ) |
24 | | logimcl 25275 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) |
25 | 4, 24 | sylan2 595 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) |
26 | 25 | simprd 499 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (ℑ‘(log‘𝐴)) ≤ π) |
27 | | rpre 12452 |
. . . . . . . . . . . . 13
⊢ (-𝐴 ∈ ℝ+
→ -𝐴 ∈
ℝ) |
28 | 27 | renegcld 11119 |
. . . . . . . . . . . 12
⊢ (-𝐴 ∈ ℝ+
→ --𝐴 ∈
ℝ) |
29 | | negneg 10988 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) |
30 | 29 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ --𝐴 = 𝐴) |
31 | 30 | eleq1d 2837 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (--𝐴 ∈ ℝ
↔ 𝐴 ∈
ℝ)) |
32 | 28, 31 | syl5ib 247 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (-𝐴 ∈
ℝ+ → 𝐴 ∈ ℝ)) |
33 | | lognegb 25295 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+
↔ (ℑ‘(log‘𝐴)) = π)) |
34 | 4, 33 | sylan2 595 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (-𝐴 ∈
ℝ+ ↔ (ℑ‘(log‘𝐴)) = π)) |
35 | | reim0b 14540 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔
(ℑ‘𝐴) =
0)) |
36 | 35 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (𝐴 ∈ ℝ
↔ (ℑ‘𝐴) =
0)) |
37 | 32, 34, 36 | 3imtr3d 296 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ ((ℑ‘(log‘𝐴)) = π → (ℑ‘𝐴) = 0)) |
38 | 37 | necon3d 2973 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ ((ℑ‘𝐴)
≠ 0 → (ℑ‘(log‘𝐴)) ≠ π)) |
39 | 15, 38 | mpd 15 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (ℑ‘(log‘𝐴)) ≠ π) |
40 | 39 | necomd 3007 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ π ≠ (ℑ‘(log‘𝐴))) |
41 | 21, 23, 26, 40 | leneltd 10846 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (ℑ‘(log‘𝐴)) < π) |
42 | | ltneg 11192 |
. . . . . . 7
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ)
→ ((ℑ‘(log‘𝐴)) < π ↔ -π <
-(ℑ‘(log‘𝐴)))) |
43 | 21, 22, 42 | sylancl 589 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ ((ℑ‘(log‘𝐴)) < π ↔ -π <
-(ℑ‘(log‘𝐴)))) |
44 | 41, 43 | mpbid 235 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ -π < -(ℑ‘(log‘𝐴))) |
45 | 6 | imcjd 14626 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (ℑ‘(∗‘(log‘𝐴))) = -(ℑ‘(log‘𝐴))) |
46 | 44, 45 | breqtrrd 5065 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ -π < (ℑ‘(∗‘(log‘𝐴)))) |
47 | 25 | simpld 498 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ -π < (ℑ‘(log‘𝐴))) |
48 | 22 | renegcli 10999 |
. . . . . . . 8
⊢ -π
∈ ℝ |
49 | | ltle 10781 |
. . . . . . . 8
⊢ ((-π
∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π <
(ℑ‘(log‘𝐴)) → -π ≤
(ℑ‘(log‘𝐴)))) |
50 | 48, 21, 49 | sylancr 590 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (-π < (ℑ‘(log‘𝐴)) → -π ≤
(ℑ‘(log‘𝐴)))) |
51 | 47, 50 | mpd 15 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ -π ≤ (ℑ‘(log‘𝐴))) |
52 | | lenegcon1 11196 |
. . . . . . 7
⊢ ((π
∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π ≤
(ℑ‘(log‘𝐴)) ↔ -(ℑ‘(log‘𝐴)) ≤ π)) |
53 | 22, 21, 52 | sylancr 590 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (-π ≤ (ℑ‘(log‘𝐴)) ↔ -(ℑ‘(log‘𝐴)) ≤ π)) |
54 | 51, 53 | mpbid 235 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ -(ℑ‘(log‘𝐴)) ≤ π) |
55 | 45, 54 | eqbrtrd 5059 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (ℑ‘(∗‘(log‘𝐴))) ≤ π) |
56 | | ellogrn 25265 |
. . . 4
⊢
((∗‘(log‘𝐴)) ∈ ran log ↔
((∗‘(log‘𝐴)) ∈ ℂ ∧ -π <
(ℑ‘(∗‘(log‘𝐴))) ∧
(ℑ‘(∗‘(log‘𝐴))) ≤ π)) |
57 | 20, 46, 55, 56 | syl3anbrc 1341 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (∗‘(log‘𝐴)) ∈ ran log) |
58 | | logeftb 25289 |
. . 3
⊢
(((∗‘𝐴)
∈ ℂ ∧ (∗‘𝐴) ≠ 0 ∧
(∗‘(log‘𝐴)) ∈ ran log) →
((log‘(∗‘𝐴)) = (∗‘(log‘𝐴)) ↔
(exp‘(∗‘(log‘𝐴))) = (∗‘𝐴))) |
59 | 14, 19, 57, 58 | syl3anc 1369 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ ((log‘(∗‘𝐴)) = (∗‘(log‘𝐴)) ↔
(exp‘(∗‘(log‘𝐴))) = (∗‘𝐴))) |
60 | 12, 59 | mpbird 260 |
1
⊢ ((𝐴 ∈ ℂ ∧
(ℑ‘𝐴) ≠ 0)
→ (log‘(∗‘𝐴)) = (∗‘(log‘𝐴))) |