MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2tlbnd Structured version   Visualization version   GIF version

Theorem log2tlbnd 25450
Description: Bound the error term in the series of log2cnv 25449. (Contributed by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
log2tlbnd (𝑁 ∈ ℕ0 → ((log‘2) − Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ∈ (0[,](3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁)))))
Distinct variable group:   𝑛,𝑁

Proof of Theorem log2tlbnd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13329 . . . 4 (𝑁 ∈ ℕ0 → (0...(𝑁 − 1)) ∈ Fin)
2 elfznn0 12988 . . . . 5 (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℕ0)
3 2re 11699 . . . . . . 7 2 ∈ ℝ
4 3nn 11704 . . . . . . . . 9 3 ∈ ℕ
5 2nn0 11902 . . . . . . . . . . 11 2 ∈ ℕ0
6 simpr 485 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
7 nn0mulcl 11921 . . . . . . . . . . 11 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
85, 6, 7sylancr 587 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
9 nn0p1nn 11924 . . . . . . . . . 10 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
108, 9syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((2 · 𝑛) + 1) ∈ ℕ)
11 nnmulcl 11649 . . . . . . . . 9 ((3 ∈ ℕ ∧ ((2 · 𝑛) + 1) ∈ ℕ) → (3 · ((2 · 𝑛) + 1)) ∈ ℕ)
124, 10, 11sylancr 587 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (3 · ((2 · 𝑛) + 1)) ∈ ℕ)
13 9nn 11723 . . . . . . . . 9 9 ∈ ℕ
14 nnexpcl 13430 . . . . . . . . 9 ((9 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (9↑𝑛) ∈ ℕ)
1513, 6, 14sylancr 587 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (9↑𝑛) ∈ ℕ)
1612, 15nnmulcld 11678 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℕ)
17 nndivre 11666 . . . . . . 7 ((2 ∈ ℝ ∧ ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℕ) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
183, 16, 17sylancr 587 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
1918recnd 10657 . . . . 5 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℂ)
202, 19sylan2 592 . . . 4 ((𝑁 ∈ ℕ0𝑛 ∈ (0...(𝑁 − 1))) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℂ)
211, 20fsumcl 15078 . . 3 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℂ)
22 eqid 2818 . . . . 5 (ℤ𝑁) = (ℤ𝑁)
23 nn0z 11993 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
24 eluznn0 12305 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ ℕ0)
25 oveq2 7153 . . . . . . . . . . 11 (𝑘 = 𝑛 → (2 · 𝑘) = (2 · 𝑛))
2625oveq1d 7160 . . . . . . . . . 10 (𝑘 = 𝑛 → ((2 · 𝑘) + 1) = ((2 · 𝑛) + 1))
2726oveq2d 7161 . . . . . . . . 9 (𝑘 = 𝑛 → (3 · ((2 · 𝑘) + 1)) = (3 · ((2 · 𝑛) + 1)))
28 oveq2 7153 . . . . . . . . 9 (𝑘 = 𝑛 → (9↑𝑘) = (9↑𝑛))
2927, 28oveq12d 7163 . . . . . . . 8 (𝑘 = 𝑛 → ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)) = ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))
3029oveq2d 7161 . . . . . . 7 (𝑘 = 𝑛 → (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))) = (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
31 eqid 2818 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘)))) = (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))
32 ovex 7178 . . . . . . 7 (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ V
3330, 31, 32fvmpt 6761 . . . . . 6 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))‘𝑛) = (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
3424, 33syl 17 . . . . 5 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))‘𝑛) = (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
3524, 18syldan 591 . . . . 5 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
3631log2cnv 25449 . . . . . . 7 seq0( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ⇝ (log‘2)
37 seqex 13359 . . . . . . . 8 seq0( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ∈ V
38 fvex 6676 . . . . . . . 8 (log‘2) ∈ V
3937, 38breldm 5770 . . . . . . 7 (seq0( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ⇝ (log‘2) → seq0( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ∈ dom ⇝ )
4036, 39mp1i 13 . . . . . 6 (𝑁 ∈ ℕ0 → seq0( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ∈ dom ⇝ )
41 nn0uz 12268 . . . . . . 7 0 = (ℤ‘0)
42 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
4333adantl 482 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))‘𝑛) = (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
4443, 19eqeltrd 2910 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))‘𝑛) ∈ ℂ)
4541, 42, 44iserex 15001 . . . . . 6 (𝑁 ∈ ℕ0 → (seq0( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ∈ dom ⇝ ↔ seq𝑁( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ∈ dom ⇝ ))
4640, 45mpbid 233 . . . . 5 (𝑁 ∈ ℕ0 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ∈ dom ⇝ )
4722, 23, 34, 35, 46isumrecl 15108 . . . 4 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
4847recnd 10657 . . 3 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℂ)
49 0zd 11981 . . . . 5 (𝑁 ∈ ℕ0 → 0 ∈ ℤ)
5036a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → seq0( + , (𝑘 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑘) + 1)) · (9↑𝑘))))) ⇝ (log‘2))
5141, 49, 43, 19, 50isumclim 15100 . . . 4 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ℕ0 (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (log‘2))
5241, 22, 42, 43, 19, 40isumsplit 15183 . . . 4 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ℕ0 (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))))
5351, 52eqtr3d 2855 . . 3 (𝑁 ∈ ℕ0 → (log‘2) = (Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))))
5421, 48, 53mvrladdd 11041 . 2 (𝑁 ∈ ℕ0 → ((log‘2) − Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) = Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
553a1i 11 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 2 ∈ ℝ)
56 0le2 11727 . . . . . . 7 0 ≤ 2
5756a1i 11 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 0 ≤ 2)
5816nnred 11641 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℝ)
5916nngt0d 11674 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 0 < ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))
60 divge0 11497 . . . . . 6 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℝ ∧ 0 < ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) → 0 ≤ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
6155, 57, 58, 59, 60syl22anc 834 . . . . 5 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 0 ≤ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
6224, 61syldan 591 . . . 4 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 0 ≤ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
6322, 23, 34, 35, 46, 62isumge0 15109 . . 3 (𝑁 ∈ ℕ0 → 0 ≤ Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
64 oveq2 7153 . . . . . . . . . 10 (𝑘 = 𝑛 → ((1 / 9)↑𝑘) = ((1 / 9)↑𝑛))
6564oveq2d 7161 . . . . . . . . 9 (𝑘 = 𝑛 → ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)) = ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑛)))
66 eqid 2818 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘))) = (𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))
67 ovex 7178 . . . . . . . . 9 ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑛)) ∈ V
6865, 66, 67fvmpt 6761 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))‘𝑛) = ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑛)))
6968adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))‘𝑛) = ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑛)))
70 9cn 11725 . . . . . . . . . . 11 9 ∈ ℂ
7170a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 9 ∈ ℂ)
7213nnne0i 11665 . . . . . . . . . . 11 9 ≠ 0
7372a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 9 ≠ 0)
74 nn0z 11993 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
7574adantl 482 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
7671, 73, 75exprecd 13506 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((1 / 9)↑𝑛) = (1 / (9↑𝑛)))
7776oveq2d 7161 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑛)) = ((2 / (3 · ((2 · 𝑁) + 1))) · (1 / (9↑𝑛))))
78 nn0mulcl 11921 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 · 𝑁) ∈ ℕ0)
795, 78mpan 686 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (2 · 𝑁) ∈ ℕ0)
80 nn0p1nn 11924 . . . . . . . . . . . . . 14 ((2 · 𝑁) ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℕ)
8179, 80syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℕ)
82 nnmulcl 11649 . . . . . . . . . . . . 13 ((3 ∈ ℕ ∧ ((2 · 𝑁) + 1) ∈ ℕ) → (3 · ((2 · 𝑁) + 1)) ∈ ℕ)
834, 81, 82sylancr 587 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (3 · ((2 · 𝑁) + 1)) ∈ ℕ)
84 nndivre 11666 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (3 · ((2 · 𝑁) + 1)) ∈ ℕ) → (2 / (3 · ((2 · 𝑁) + 1))) ∈ ℝ)
853, 83, 84sylancr 587 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (2 / (3 · ((2 · 𝑁) + 1))) ∈ ℝ)
8685recnd 10657 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (2 / (3 · ((2 · 𝑁) + 1))) ∈ ℂ)
8786adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (2 / (3 · ((2 · 𝑁) + 1))) ∈ ℂ)
8815nncnd 11642 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (9↑𝑛) ∈ ℂ)
8915nnne0d 11675 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (9↑𝑛) ≠ 0)
9087, 88, 89divrecd 11407 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((2 / (3 · ((2 · 𝑁) + 1))) / (9↑𝑛)) = ((2 / (3 · ((2 · 𝑁) + 1))) · (1 / (9↑𝑛))))
91 2cnd 11703 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → 2 ∈ ℂ)
9283adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (3 · ((2 · 𝑁) + 1)) ∈ ℕ)
9392nncnd 11642 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (3 · ((2 · 𝑁) + 1)) ∈ ℂ)
9492nnne0d 11675 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (3 · ((2 · 𝑁) + 1)) ≠ 0)
9591, 93, 88, 94, 89divdiv1d 11435 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((2 / (3 · ((2 · 𝑁) + 1))) / (9↑𝑛)) = (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))))
9677, 90, 953eqtr2d 2859 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑛)) = (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))))
9769, 96eqtrd 2853 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))‘𝑛) = (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))))
9824, 97syldan 591 . . . . 5 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))‘𝑛) = (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))))
9992, 15nnmulcld 11678 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ∈ ℕ)
100 nndivre 11666 . . . . . . 7 ((2 ∈ ℝ ∧ ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ∈ ℕ) → (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))) ∈ ℝ)
1013, 99, 100sylancr 587 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ ℕ0) → (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))) ∈ ℝ)
10224, 101syldan 591 . . . . 5 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))) ∈ ℝ)
10379adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 · 𝑁) ∈ ℕ0)
104103nn0red 11944 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 · 𝑁) ∈ ℝ)
1055, 24, 7sylancr 587 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 · 𝑛) ∈ ℕ0)
106105nn0red 11944 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 · 𝑛) ∈ ℝ)
107 1red 10630 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 1 ∈ ℝ)
108 eluzle 12244 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → 𝑁𝑛)
109108adantl 482 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 𝑁𝑛)
110 nn0re 11894 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
111110adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
11224nn0red 11944 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ ℝ)
1133a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 2 ∈ ℝ)
114 2pos 11728 . . . . . . . . . . . 12 0 < 2
115114a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 0 < 2)
116 lemul2 11481 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑁𝑛 ↔ (2 · 𝑁) ≤ (2 · 𝑛)))
117111, 112, 113, 115, 116syl112anc 1366 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (𝑁𝑛 ↔ (2 · 𝑁) ≤ (2 · 𝑛)))
118109, 117mpbid 233 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 · 𝑁) ≤ (2 · 𝑛))
119104, 106, 107, 118leadd1dd 11242 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((2 · 𝑁) + 1) ≤ ((2 · 𝑛) + 1))
12081adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((2 · 𝑁) + 1) ∈ ℕ)
121120nnred 11641 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((2 · 𝑁) + 1) ∈ ℝ)
12224, 10syldan 591 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((2 · 𝑛) + 1) ∈ ℕ)
123122nnred 11641 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((2 · 𝑛) + 1) ∈ ℝ)
124 3re 11705 . . . . . . . . . 10 3 ∈ ℝ
125124a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 3 ∈ ℝ)
126 3pos 11730 . . . . . . . . . 10 0 < 3
127126a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 0 < 3)
128 lemul2 11481 . . . . . . . . 9 ((((2 · 𝑁) + 1) ∈ ℝ ∧ ((2 · 𝑛) + 1) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((2 · 𝑁) + 1) ≤ ((2 · 𝑛) + 1) ↔ (3 · ((2 · 𝑁) + 1)) ≤ (3 · ((2 · 𝑛) + 1))))
129121, 123, 125, 127, 128syl112anc 1366 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (((2 · 𝑁) + 1) ≤ ((2 · 𝑛) + 1) ↔ (3 · ((2 · 𝑁) + 1)) ≤ (3 · ((2 · 𝑛) + 1))))
130119, 129mpbid 233 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (3 · ((2 · 𝑁) + 1)) ≤ (3 · ((2 · 𝑛) + 1)))
13183adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (3 · ((2 · 𝑁) + 1)) ∈ ℕ)
132131nnred 11641 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (3 · ((2 · 𝑁) + 1)) ∈ ℝ)
13324, 12syldan 591 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (3 · ((2 · 𝑛) + 1)) ∈ ℕ)
134133nnred 11641 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (3 · ((2 · 𝑛) + 1)) ∈ ℝ)
13513, 24, 14sylancr 587 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (9↑𝑛) ∈ ℕ)
136135nnred 11641 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (9↑𝑛) ∈ ℝ)
137135nngt0d 11674 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 0 < (9↑𝑛))
138 lemul1 11480 . . . . . . . 8 (((3 · ((2 · 𝑁) + 1)) ∈ ℝ ∧ (3 · ((2 · 𝑛) + 1)) ∈ ℝ ∧ ((9↑𝑛) ∈ ℝ ∧ 0 < (9↑𝑛))) → ((3 · ((2 · 𝑁) + 1)) ≤ (3 · ((2 · 𝑛) + 1)) ↔ ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ≤ ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
139132, 134, 136, 137, 138syl112anc 1366 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((3 · ((2 · 𝑁) + 1)) ≤ (3 · ((2 · 𝑛) + 1)) ↔ ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ≤ ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))))
140130, 139mpbid 233 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ≤ ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))
14124, 99syldan 591 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ∈ ℕ)
142141nnred 11641 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ∈ ℝ)
143141nngt0d 11674 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 0 < ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)))
14424, 58syldan 591 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℝ)
14524, 59syldan 591 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → 0 < ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))
146 lediv2 11518 . . . . . . 7 (((((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ∈ ℝ ∧ 0 < ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))) ∧ (((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℝ ∧ 0 < ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ≤ ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ↔ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ≤ (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)))))
147142, 143, 144, 145, 113, 115, 146syl222anc 1378 . . . . . 6 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)) ≤ ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ↔ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ≤ (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛)))))
148140, 147mpbid 233 . . . . 5 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ≤ (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))))
149 9re 11724 . . . . . . . . . . . 12 9 ∈ ℝ
150149, 72rereccli 11393 . . . . . . . . . . 11 (1 / 9) ∈ ℝ
151150recni 10643 . . . . . . . . . 10 (1 / 9) ∈ ℂ
152151a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (1 / 9) ∈ ℂ)
153 0re 10631 . . . . . . . . . . . . 13 0 ∈ ℝ
154 9pos 11738 . . . . . . . . . . . . . 14 0 < 9
155149, 154recgt0ii 11534 . . . . . . . . . . . . 13 0 < (1 / 9)
156153, 150, 155ltleii 10751 . . . . . . . . . . . 12 0 ≤ (1 / 9)
157 absid 14644 . . . . . . . . . . . 12 (((1 / 9) ∈ ℝ ∧ 0 ≤ (1 / 9)) → (abs‘(1 / 9)) = (1 / 9))
158150, 156, 157mp2an 688 . . . . . . . . . . 11 (abs‘(1 / 9)) = (1 / 9)
159 1lt9 11831 . . . . . . . . . . . . 13 1 < 9
160 recgt1i 11525 . . . . . . . . . . . . 13 ((9 ∈ ℝ ∧ 1 < 9) → (0 < (1 / 9) ∧ (1 / 9) < 1))
161149, 159, 160mp2an 688 . . . . . . . . . . . 12 (0 < (1 / 9) ∧ (1 / 9) < 1)
162161simpri 486 . . . . . . . . . . 11 (1 / 9) < 1
163158, 162eqbrtri 5078 . . . . . . . . . 10 (abs‘(1 / 9)) < 1
164163a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (abs‘(1 / 9)) < 1)
165 eqid 2818 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘)) = (𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘))
166 ovex 7178 . . . . . . . . . . 11 ((1 / 9)↑𝑛) ∈ V
16764, 165, 166fvmpt 6761 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘))‘𝑛) = ((1 / 9)↑𝑛))
16824, 167syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘))‘𝑛) = ((1 / 9)↑𝑛))
169152, 164, 42, 168geolim2 15215 . . . . . . . 8 (𝑁 ∈ ℕ0 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘))) ⇝ (((1 / 9)↑𝑁) / (1 − (1 / 9))))
17070a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → 9 ∈ ℂ)
17172a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → 9 ≠ 0)
172170, 171, 23exprecd 13506 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((1 / 9)↑𝑁) = (1 / (9↑𝑁)))
17370, 72dividi 11361 . . . . . . . . . . . . 13 (9 / 9) = 1
174173oveq1i 7155 . . . . . . . . . . . 12 ((9 / 9) − (1 / 9)) = (1 − (1 / 9))
175 ax-1cn 10583 . . . . . . . . . . . . . 14 1 ∈ ℂ
17670, 72pm3.2i 471 . . . . . . . . . . . . . 14 (9 ∈ ℂ ∧ 9 ≠ 0)
177 divsubdir 11322 . . . . . . . . . . . . . 14 ((9 ∈ ℂ ∧ 1 ∈ ℂ ∧ (9 ∈ ℂ ∧ 9 ≠ 0)) → ((9 − 1) / 9) = ((9 / 9) − (1 / 9)))
17870, 175, 176, 177mp3an 1452 . . . . . . . . . . . . 13 ((9 − 1) / 9) = ((9 / 9) − (1 / 9))
179 9m1e8 11759 . . . . . . . . . . . . . 14 (9 − 1) = 8
180179oveq1i 7155 . . . . . . . . . . . . 13 ((9 − 1) / 9) = (8 / 9)
181178, 180eqtr3i 2843 . . . . . . . . . . . 12 ((9 / 9) − (1 / 9)) = (8 / 9)
182174, 181eqtr3i 2843 . . . . . . . . . . 11 (1 − (1 / 9)) = (8 / 9)
183182a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (1 − (1 / 9)) = (8 / 9))
184172, 183oveq12d 7163 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (((1 / 9)↑𝑁) / (1 − (1 / 9))) = ((1 / (9↑𝑁)) / (8 / 9)))
185175a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
186 nnexpcl 13430 . . . . . . . . . . . 12 ((9 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (9↑𝑁) ∈ ℕ)
18713, 186mpan 686 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (9↑𝑁) ∈ ℕ)
188187nncnd 11642 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (9↑𝑁) ∈ ℂ)
189 8cn 11722 . . . . . . . . . . . 12 8 ∈ ℂ
190189, 70, 72divcli 11370 . . . . . . . . . . 11 (8 / 9) ∈ ℂ
191190a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (8 / 9) ∈ ℂ)
192187nnne0d 11675 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (9↑𝑁) ≠ 0)
193 8nn 11720 . . . . . . . . . . . . 13 8 ∈ ℕ
194193nnne0i 11665 . . . . . . . . . . . 12 8 ≠ 0
195189, 70, 194, 72divne0i 11376 . . . . . . . . . . 11 (8 / 9) ≠ 0
196195a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (8 / 9) ≠ 0)
197185, 188, 191, 192, 196divdiv32d 11429 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((1 / (9↑𝑁)) / (8 / 9)) = ((1 / (8 / 9)) / (9↑𝑁)))
198 recdiv 11334 . . . . . . . . . . . 12 (((8 ∈ ℂ ∧ 8 ≠ 0) ∧ (9 ∈ ℂ ∧ 9 ≠ 0)) → (1 / (8 / 9)) = (9 / 8))
199189, 194, 70, 72, 198mp4an 689 . . . . . . . . . . 11 (1 / (8 / 9)) = (9 / 8)
200199oveq1i 7155 . . . . . . . . . 10 ((1 / (8 / 9)) / (9↑𝑁)) = ((9 / 8) / (9↑𝑁))
201189a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → 8 ∈ ℂ)
202194a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → 8 ≠ 0)
203170, 201, 188, 202, 192divdiv1d 11435 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((9 / 8) / (9↑𝑁)) = (9 / (8 · (9↑𝑁))))
204200, 203syl5eq 2865 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((1 / (8 / 9)) / (9↑𝑁)) = (9 / (8 · (9↑𝑁))))
205184, 197, 2043eqtrd 2857 . . . . . . . 8 (𝑁 ∈ ℕ0 → (((1 / 9)↑𝑁) / (1 − (1 / 9))) = (9 / (8 · (9↑𝑁))))
206169, 205breqtrd 5083 . . . . . . 7 (𝑁 ∈ ℕ0 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘))) ⇝ (9 / (8 · (9↑𝑁))))
207 expcl 13435 . . . . . . . . 9 (((1 / 9) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((1 / 9)↑𝑛) ∈ ℂ)
208151, 24, 207sylancr 587 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((1 / 9)↑𝑛) ∈ ℂ)
209168, 208eqeltrd 2910 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘))‘𝑛) ∈ ℂ)
21024, 68syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))‘𝑛) = ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑛)))
211168oveq2d 7161 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((2 / (3 · ((2 · 𝑁) + 1))) · ((𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘))‘𝑛)) = ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑛)))
212210, 211eqtr4d 2856 . . . . . . 7 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → ((𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))‘𝑛) = ((2 / (3 · ((2 · 𝑁) + 1))) · ((𝑘 ∈ ℕ0 ↦ ((1 / 9)↑𝑘))‘𝑛)))
21322, 23, 86, 206, 209, 212isermulc2 15002 . . . . . 6 (𝑁 ∈ ℕ0 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))) ⇝ ((2 / (3 · ((2 · 𝑁) + 1))) · (9 / (8 · (9↑𝑁)))))
214 seqex 13359 . . . . . . 7 seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))) ∈ V
215 ovex 7178 . . . . . . 7 ((2 / (3 · ((2 · 𝑁) + 1))) · (9 / (8 · (9↑𝑁)))) ∈ V
216214, 215breldm 5770 . . . . . 6 (seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))) ⇝ ((2 / (3 · ((2 · 𝑁) + 1))) · (9 / (8 · (9↑𝑁)))) → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))) ∈ dom ⇝ )
217213, 216syl 17 . . . . 5 (𝑁 ∈ ℕ0 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))) ∈ dom ⇝ )
21822, 23, 34, 35, 98, 102, 148, 46, 217isumle 15187 . . . 4 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ≤ Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))))
219102recnd 10657 . . . . 5 ((𝑁 ∈ ℕ0𝑛 ∈ (ℤ𝑁)) → (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))) ∈ ℂ)
220 3cn 11706 . . . . . . . . . . . 12 3 ∈ ℂ
221 4cn 11710 . . . . . . . . . . . 12 4 ∈ ℂ
222 2cn 11700 . . . . . . . . . . . 12 2 ∈ ℂ
223 4ne0 11733 . . . . . . . . . . . 12 4 ≠ 0
224 3ne0 11731 . . . . . . . . . . . 12 3 ≠ 0
225 2ne0 11729 . . . . . . . . . . . 12 2 ≠ 0
226220, 221, 222, 220, 223, 224, 225divdivdivi 11391 . . . . . . . . . . 11 ((3 / 4) / (2 / 3)) = ((3 · 3) / (4 · 2))
227 3t3e9 11792 . . . . . . . . . . . 12 (3 · 3) = 9
228 4t2e8 11793 . . . . . . . . . . . 12 (4 · 2) = 8
229227, 228oveq12i 7157 . . . . . . . . . . 11 ((3 · 3) / (4 · 2)) = (9 / 8)
230226, 229eqtri 2841 . . . . . . . . . 10 ((3 / 4) / (2 / 3)) = (9 / 8)
231230oveq2i 7156 . . . . . . . . 9 ((2 / 3) · ((3 / 4) / (2 / 3))) = ((2 / 3) · (9 / 8))
232220, 221, 223divcli 11370 . . . . . . . . . 10 (3 / 4) ∈ ℂ
233222, 220, 224divcli 11370 . . . . . . . . . 10 (2 / 3) ∈ ℂ
234222, 220, 225, 224divne0i 11376 . . . . . . . . . 10 (2 / 3) ≠ 0
235232, 233, 234divcan2i 11371 . . . . . . . . 9 ((2 / 3) · ((3 / 4) / (2 / 3))) = (3 / 4)
236231, 235eqtr3i 2843 . . . . . . . 8 ((2 / 3) · (9 / 8)) = (3 / 4)
237236oveq1i 7155 . . . . . . 7 (((2 / 3) · (9 / 8)) / (((2 · 𝑁) + 1) · (9↑𝑁))) = ((3 / 4) / (((2 · 𝑁) + 1) · (9↑𝑁)))
238 2cnd 11703 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
239220a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 3 ∈ ℂ)
24081nncnd 11642 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℂ)
241224a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 3 ≠ 0)
24281nnne0d 11675 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) ≠ 0)
243238, 239, 240, 241, 242divdiv1d 11435 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((2 / 3) / ((2 · 𝑁) + 1)) = (2 / (3 · ((2 · 𝑁) + 1))))
244243, 203oveq12d 7163 . . . . . . . 8 (𝑁 ∈ ℕ0 → (((2 / 3) / ((2 · 𝑁) + 1)) · ((9 / 8) / (9↑𝑁))) = ((2 / (3 · ((2 · 𝑁) + 1))) · (9 / (8 · (9↑𝑁)))))
245233a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2 / 3) ∈ ℂ)
24670, 189, 194divcli 11370 . . . . . . . . . 10 (9 / 8) ∈ ℂ
247246a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (9 / 8) ∈ ℂ)
248245, 240, 247, 188, 242, 192divmuldivd 11445 . . . . . . . 8 (𝑁 ∈ ℕ0 → (((2 / 3) / ((2 · 𝑁) + 1)) · ((9 / 8) / (9↑𝑁))) = (((2 / 3) · (9 / 8)) / (((2 · 𝑁) + 1) · (9↑𝑁))))
249244, 248eqtr3d 2855 . . . . . . 7 (𝑁 ∈ ℕ0 → ((2 / (3 · ((2 · 𝑁) + 1))) · (9 / (8 · (9↑𝑁)))) = (((2 / 3) · (9 / 8)) / (((2 · 𝑁) + 1) · (9↑𝑁))))
250221a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 4 ∈ ℂ)
251250, 240, 188mulassd 10652 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁)) = (4 · (((2 · 𝑁) + 1) · (9↑𝑁))))
252251oveq2d 7161 . . . . . . . 8 (𝑁 ∈ ℕ0 → (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))) = (3 / (4 · (((2 · 𝑁) + 1) · (9↑𝑁)))))
25381, 187nnmulcld 11678 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) · (9↑𝑁)) ∈ ℕ)
254253nncnd 11642 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) · (9↑𝑁)) ∈ ℂ)
255223a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 4 ≠ 0)
256253nnne0d 11675 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) · (9↑𝑁)) ≠ 0)
257239, 250, 254, 255, 256divdiv1d 11435 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((3 / 4) / (((2 · 𝑁) + 1) · (9↑𝑁))) = (3 / (4 · (((2 · 𝑁) + 1) · (9↑𝑁)))))
258252, 257eqtr4d 2856 . . . . . . 7 (𝑁 ∈ ℕ0 → (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))) = ((3 / 4) / (((2 · 𝑁) + 1) · (9↑𝑁))))
259237, 249, 2583eqtr4a 2879 . . . . . 6 (𝑁 ∈ ℕ0 → ((2 / (3 · ((2 · 𝑁) + 1))) · (9 / (8 · (9↑𝑁)))) = (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
260213, 259breqtrd 5083 . . . . 5 (𝑁 ∈ ℕ0 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((2 / (3 · ((2 · 𝑁) + 1))) · ((1 / 9)↑𝑘)))) ⇝ (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
26122, 23, 98, 219, 260isumclim 15100 . . . 4 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑛))) = (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
262218, 261breqtrd 5083 . . 3 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ≤ (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
263 4nn 11708 . . . . . . 7 4 ∈ ℕ
264 nnmulcl 11649 . . . . . . 7 ((4 ∈ ℕ ∧ ((2 · 𝑁) + 1) ∈ ℕ) → (4 · ((2 · 𝑁) + 1)) ∈ ℕ)
265263, 81, 264sylancr 587 . . . . . 6 (𝑁 ∈ ℕ0 → (4 · ((2 · 𝑁) + 1)) ∈ ℕ)
266265, 187nnmulcld 11678 . . . . 5 (𝑁 ∈ ℕ0 → ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁)) ∈ ℕ)
267 nndivre 11666 . . . . 5 ((3 ∈ ℝ ∧ ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁)) ∈ ℕ) → (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))) ∈ ℝ)
268124, 266, 267sylancr 587 . . . 4 (𝑁 ∈ ℕ0 → (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))) ∈ ℝ)
269 elicc2 12789 . . . 4 ((0 ∈ ℝ ∧ (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))) ∈ ℝ) → (Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ (0[,](3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁)))) ↔ (Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ ∧ 0 ≤ Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∧ Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ≤ (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))))))
270153, 268, 269sylancr 587 . . 3 (𝑁 ∈ ℕ0 → (Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ (0[,](3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁)))) ↔ (Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ ∧ 0 ≤ Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∧ Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ≤ (3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))))))
27147, 63, 262, 270mpbir3and 1334 . 2 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (ℤ𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ (0[,](3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁)))))
27254, 271eqeltrd 2910 1 (𝑁 ∈ ℕ0 → ((log‘2) − Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ∈ (0[,](3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013   class class class wbr 5057  cmpt 5137  dom cdm 5548  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530   < clt 10663  cle 10664  cmin 10858   / cdiv 11285  cn 11626  2c2 11680  3c3 11681  4c4 11682  8c8 11686  9c9 11687  0cn0 11885  cz 11969  cuz 12231  [,]cicc 12729  ...cfz 12880  seqcseq 13357  cexp 13417  abscabs 14581  cli 14829  Σcsu 15030  logclog 25065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-tan 15413  df-pi 15414  df-dvds 15596  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-cmp 21923  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392  df-ulm 24892  df-log 25067  df-atan 25372
This theorem is referenced by:  log2ub  25454
  Copyright terms: Public domain W3C validator