MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dvds Structured version   Visualization version   GIF version

Theorem 3dvds 16311
Description: A rule for divisibility by 3 of a number written in base 10. This is Metamath 100 proof #85. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 17-Jan-2015.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
3dvds ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑁

Proof of Theorem 3dvds
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 3z 12628 . . 3 3 ∈ ℤ
21a1i 11 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → 3 ∈ ℤ)
3 fzfid 13974 . . 3 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → (0...𝑁) ∈ Fin)
4 ffvelcdm 7090 . . . . 5 ((𝐹:(0...𝑁)⟶ℤ ∧ 𝑘 ∈ (0...𝑁)) → (𝐹𝑘) ∈ ℤ)
54adantll 712 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐹𝑘) ∈ ℤ)
6 10nn 12726 . . . . . 6 10 ∈ ℕ
76nnzi 12619 . . . . 5 10 ∈ ℤ
8 elfznn0 13629 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
98adantl 480 . . . . 5 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
10 zexpcl 14077 . . . . 5 ((10 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (10↑𝑘) ∈ ℤ)
117, 9, 10sylancr 585 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (10↑𝑘) ∈ ℤ)
125, 11zmulcld 12705 . . 3 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹𝑘) · (10↑𝑘)) ∈ ℤ)
133, 12fsumzcl 15717 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ∈ ℤ)
143, 5fsumzcl 15717 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → Σ𝑘 ∈ (0...𝑁)(𝐹𝑘) ∈ ℤ)
1512, 5zsubcld 12704 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)) ∈ ℤ)
16 ax-1cn 11198 . . . . . . . . . . . 12 1 ∈ ℂ
176nncni 12255 . . . . . . . . . . . 12 10 ∈ ℂ
1816, 17negsubdi2i 11578 . . . . . . . . . . 11 -(1 − 10) = (10 − 1)
19 9p1e10 12712 . . . . . . . . . . . . 13 (9 + 1) = 10
2019eqcomi 2734 . . . . . . . . . . . 12 10 = (9 + 1)
2120oveq1i 7429 . . . . . . . . . . 11 (10 − 1) = ((9 + 1) − 1)
22 9cn 12345 . . . . . . . . . . . 12 9 ∈ ℂ
2322, 16pncan3oi 11508 . . . . . . . . . . 11 ((9 + 1) − 1) = 9
2418, 21, 233eqtri 2757 . . . . . . . . . 10 -(1 − 10) = 9
25 3t3e9 12412 . . . . . . . . . 10 (3 · 3) = 9
2624, 25eqtr4i 2756 . . . . . . . . 9 -(1 − 10) = (3 · 3)
2717a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ010 ∈ ℂ)
28 1re 11246 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
29 1lt10 12849 . . . . . . . . . . . . . . . . 17 1 < 10
3028, 29gtneii 11358 . . . . . . . . . . . . . . . 16 10 ≠ 1
3130a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ010 ≠ 1)
32 id 22 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
3327, 31, 32geoser 15849 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → Σ𝑗 ∈ (0...(𝑘 − 1))(10↑𝑗) = ((1 − (10↑𝑘)) / (1 − 10)))
34 fzfid 13974 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (0...(𝑘 − 1)) ∈ Fin)
35 elfznn0 13629 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...(𝑘 − 1)) → 𝑗 ∈ ℕ0)
3635adantl 480 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0𝑗 ∈ (0...(𝑘 − 1))) → 𝑗 ∈ ℕ0)
37 zexpcl 14077 . . . . . . . . . . . . . . . 16 ((10 ∈ ℤ ∧ 𝑗 ∈ ℕ0) → (10↑𝑗) ∈ ℤ)
387, 36, 37sylancr 585 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0𝑗 ∈ (0...(𝑘 − 1))) → (10↑𝑗) ∈ ℤ)
3934, 38fsumzcl 15717 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → Σ𝑗 ∈ (0...(𝑘 − 1))(10↑𝑗) ∈ ℤ)
4033, 39eqeltrrd 2826 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → ((1 − (10↑𝑘)) / (1 − 10)) ∈ ℤ)
41 1z 12625 . . . . . . . . . . . . . . 15 1 ∈ ℤ
42 zsubcl 12637 . . . . . . . . . . . . . . 15 ((1 ∈ ℤ ∧ 10 ∈ ℤ) → (1 − 10) ∈ ℤ)
4341, 7, 42mp2an 690 . . . . . . . . . . . . . 14 (1 − 10) ∈ ℤ
4428, 29ltneii 11359 . . . . . . . . . . . . . . 15 1 ≠ 10
4516, 17subeq0i 11572 . . . . . . . . . . . . . . . 16 ((1 − 10) = 0 ↔ 1 = 10)
4645necon3bii 2982 . . . . . . . . . . . . . . 15 ((1 − 10) ≠ 0 ↔ 1 ≠ 10)
4744, 46mpbir 230 . . . . . . . . . . . . . 14 (1 − 10) ≠ 0
487, 32, 10sylancr 585 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (10↑𝑘) ∈ ℤ)
49 zsubcl 12637 . . . . . . . . . . . . . . 15 ((1 ∈ ℤ ∧ (10↑𝑘) ∈ ℤ) → (1 − (10↑𝑘)) ∈ ℤ)
5041, 48, 49sylancr 585 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (1 − (10↑𝑘)) ∈ ℤ)
51 dvdsval2 16237 . . . . . . . . . . . . . 14 (((1 − 10) ∈ ℤ ∧ (1 − 10) ≠ 0 ∧ (1 − (10↑𝑘)) ∈ ℤ) → ((1 − 10) ∥ (1 − (10↑𝑘)) ↔ ((1 − (10↑𝑘)) / (1 − 10)) ∈ ℤ))
5243, 47, 50, 51mp3an12i 1461 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → ((1 − 10) ∥ (1 − (10↑𝑘)) ↔ ((1 − (10↑𝑘)) / (1 − 10)) ∈ ℤ))
5340, 52mpbird 256 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (1 − 10) ∥ (1 − (10↑𝑘)))
5448zcnd 12700 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (10↑𝑘) ∈ ℂ)
55 negsubdi2 11551 . . . . . . . . . . . . 13 (((10↑𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → -((10↑𝑘) − 1) = (1 − (10↑𝑘)))
5654, 16, 55sylancl 584 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → -((10↑𝑘) − 1) = (1 − (10↑𝑘)))
5753, 56breqtrrd 5177 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (1 − 10) ∥ -((10↑𝑘) − 1))
58 peano2zm 12638 . . . . . . . . . . . . 13 ((10↑𝑘) ∈ ℤ → ((10↑𝑘) − 1) ∈ ℤ)
5948, 58syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((10↑𝑘) − 1) ∈ ℤ)
60 dvdsnegb 16254 . . . . . . . . . . . 12 (((1 − 10) ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ (1 − 10) ∥ -((10↑𝑘) − 1)))
6143, 59, 60sylancr 585 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ (1 − 10) ∥ -((10↑𝑘) − 1)))
6257, 61mpbird 256 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (1 − 10) ∥ ((10↑𝑘) − 1))
63 negdvdsb 16253 . . . . . . . . . . 11 (((1 − 10) ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ -(1 − 10) ∥ ((10↑𝑘) − 1)))
6443, 59, 63sylancr 585 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ -(1 − 10) ∥ ((10↑𝑘) − 1)))
6562, 64mpbid 231 . . . . . . . . 9 (𝑘 ∈ ℕ0 → -(1 − 10) ∥ ((10↑𝑘) − 1))
6626, 65eqbrtrrid 5185 . . . . . . . 8 (𝑘 ∈ ℕ0 → (3 · 3) ∥ ((10↑𝑘) − 1))
67 muldvds1 16261 . . . . . . . . 9 ((3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → ((3 · 3) ∥ ((10↑𝑘) − 1) → 3 ∥ ((10↑𝑘) − 1)))
681, 1, 59, 67mp3an12i 1461 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((3 · 3) ∥ ((10↑𝑘) − 1) → 3 ∥ ((10↑𝑘) − 1)))
6966, 68mpd 15 . . . . . . 7 (𝑘 ∈ ℕ0 → 3 ∥ ((10↑𝑘) − 1))
709, 69syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ ((10↑𝑘) − 1))
7111, 58syl 17 . . . . . . 7 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((10↑𝑘) − 1) ∈ ℤ)
72 dvdsmultr2 16278 . . . . . . 7 ((3 ∈ ℤ ∧ (𝐹𝑘) ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → (3 ∥ ((10↑𝑘) − 1) → 3 ∥ ((𝐹𝑘) · ((10↑𝑘) − 1))))
731, 5, 71, 72mp3an2i 1462 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (3 ∥ ((10↑𝑘) − 1) → 3 ∥ ((𝐹𝑘) · ((10↑𝑘) − 1))))
7470, 73mpd 15 . . . . 5 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ ((𝐹𝑘) · ((10↑𝑘) − 1)))
755zcnd 12700 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐹𝑘) ∈ ℂ)
7611zcnd 12700 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (10↑𝑘) ∈ ℂ)
7775, 76muls1d 11706 . . . . 5 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹𝑘) · ((10↑𝑘) − 1)) = (((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)))
7874, 77breqtrd 5175 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ (((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)))
793, 2, 15, 78fsumdvds 16288 . . 3 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → 3 ∥ Σ𝑘 ∈ (0...𝑁)(((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)))
8012zcnd 12700 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹𝑘) · (10↑𝑘)) ∈ ℂ)
813, 80, 75fsumsub 15770 . . 3 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → Σ𝑘 ∈ (0...𝑁)(((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)) = (Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
8279, 81breqtrd 5175 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → 3 ∥ (Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
83 dvdssub2 16281 . 2 (((3 ∈ ℤ ∧ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ∈ ℤ ∧ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘) ∈ ℤ) ∧ 3 ∥ (Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹𝑘))) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
842, 13, 14, 82, 83syl31anc 1370 1 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5149  wf 6545  cfv 6549  (class class class)co 7419  cc 11138  0cc0 11140  1c1 11141   + caddc 11143   · cmul 11145  cmin 11476  -cneg 11477   / cdiv 11903  3c3 12301  9c9 12307  0cn0 12505  cz 12591  cdc 12710  ...cfz 13519  cexp 14062  Σcsu 15668  cdvds 16234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-rp 13010  df-fz 13520  df-fzo 13663  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-sum 15669  df-dvds 16235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator