MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dvds Structured version   Visualization version   GIF version

Theorem 3dvds 16308
Description: A rule for divisibility by 3 of a number written in base 10. This is Metamath 100 proof #85. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 17-Jan-2015.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
3dvds ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑁

Proof of Theorem 3dvds
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 3z 12573 . . 3 3 ∈ ℤ
21a1i 11 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → 3 ∈ ℤ)
3 fzfid 13945 . . 3 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → (0...𝑁) ∈ Fin)
4 ffvelcdm 7056 . . . . 5 ((𝐹:(0...𝑁)⟶ℤ ∧ 𝑘 ∈ (0...𝑁)) → (𝐹𝑘) ∈ ℤ)
54adantll 714 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐹𝑘) ∈ ℤ)
6 10nn 12672 . . . . . 6 10 ∈ ℕ
76nnzi 12564 . . . . 5 10 ∈ ℤ
8 elfznn0 13588 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
98adantl 481 . . . . 5 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
10 zexpcl 14048 . . . . 5 ((10 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (10↑𝑘) ∈ ℤ)
117, 9, 10sylancr 587 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (10↑𝑘) ∈ ℤ)
125, 11zmulcld 12651 . . 3 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹𝑘) · (10↑𝑘)) ∈ ℤ)
133, 12fsumzcl 15708 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ∈ ℤ)
143, 5fsumzcl 15708 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → Σ𝑘 ∈ (0...𝑁)(𝐹𝑘) ∈ ℤ)
1512, 5zsubcld 12650 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)) ∈ ℤ)
16 ax-1cn 11133 . . . . . . . . . . . 12 1 ∈ ℂ
176nncni 12203 . . . . . . . . . . . 12 10 ∈ ℂ
1816, 17negsubdi2i 11515 . . . . . . . . . . 11 -(1 − 10) = (10 − 1)
19 9p1e10 12658 . . . . . . . . . . . . 13 (9 + 1) = 10
2019eqcomi 2739 . . . . . . . . . . . 12 10 = (9 + 1)
2120oveq1i 7400 . . . . . . . . . . 11 (10 − 1) = ((9 + 1) − 1)
22 9cn 12293 . . . . . . . . . . . 12 9 ∈ ℂ
2322, 16pncan3oi 11444 . . . . . . . . . . 11 ((9 + 1) − 1) = 9
2418, 21, 233eqtri 2757 . . . . . . . . . 10 -(1 − 10) = 9
25 3t3e9 12355 . . . . . . . . . 10 (3 · 3) = 9
2624, 25eqtr4i 2756 . . . . . . . . 9 -(1 − 10) = (3 · 3)
2717a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ010 ∈ ℂ)
28 1re 11181 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
29 1lt10 12795 . . . . . . . . . . . . . . . . 17 1 < 10
3028, 29gtneii 11293 . . . . . . . . . . . . . . . 16 10 ≠ 1
3130a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ010 ≠ 1)
32 id 22 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
3327, 31, 32geoser 15840 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → Σ𝑗 ∈ (0...(𝑘 − 1))(10↑𝑗) = ((1 − (10↑𝑘)) / (1 − 10)))
34 fzfid 13945 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (0...(𝑘 − 1)) ∈ Fin)
35 elfznn0 13588 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...(𝑘 − 1)) → 𝑗 ∈ ℕ0)
3635adantl 481 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0𝑗 ∈ (0...(𝑘 − 1))) → 𝑗 ∈ ℕ0)
37 zexpcl 14048 . . . . . . . . . . . . . . . 16 ((10 ∈ ℤ ∧ 𝑗 ∈ ℕ0) → (10↑𝑗) ∈ ℤ)
387, 36, 37sylancr 587 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0𝑗 ∈ (0...(𝑘 − 1))) → (10↑𝑗) ∈ ℤ)
3934, 38fsumzcl 15708 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → Σ𝑗 ∈ (0...(𝑘 − 1))(10↑𝑗) ∈ ℤ)
4033, 39eqeltrrd 2830 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → ((1 − (10↑𝑘)) / (1 − 10)) ∈ ℤ)
41 1z 12570 . . . . . . . . . . . . . . 15 1 ∈ ℤ
42 zsubcl 12582 . . . . . . . . . . . . . . 15 ((1 ∈ ℤ ∧ 10 ∈ ℤ) → (1 − 10) ∈ ℤ)
4341, 7, 42mp2an 692 . . . . . . . . . . . . . 14 (1 − 10) ∈ ℤ
4428, 29ltneii 11294 . . . . . . . . . . . . . . 15 1 ≠ 10
4516, 17subeq0i 11509 . . . . . . . . . . . . . . . 16 ((1 − 10) = 0 ↔ 1 = 10)
4645necon3bii 2978 . . . . . . . . . . . . . . 15 ((1 − 10) ≠ 0 ↔ 1 ≠ 10)
4744, 46mpbir 231 . . . . . . . . . . . . . 14 (1 − 10) ≠ 0
487, 32, 10sylancr 587 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (10↑𝑘) ∈ ℤ)
49 zsubcl 12582 . . . . . . . . . . . . . . 15 ((1 ∈ ℤ ∧ (10↑𝑘) ∈ ℤ) → (1 − (10↑𝑘)) ∈ ℤ)
5041, 48, 49sylancr 587 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (1 − (10↑𝑘)) ∈ ℤ)
51 dvdsval2 16232 . . . . . . . . . . . . . 14 (((1 − 10) ∈ ℤ ∧ (1 − 10) ≠ 0 ∧ (1 − (10↑𝑘)) ∈ ℤ) → ((1 − 10) ∥ (1 − (10↑𝑘)) ↔ ((1 − (10↑𝑘)) / (1 − 10)) ∈ ℤ))
5243, 47, 50, 51mp3an12i 1467 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → ((1 − 10) ∥ (1 − (10↑𝑘)) ↔ ((1 − (10↑𝑘)) / (1 − 10)) ∈ ℤ))
5340, 52mpbird 257 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (1 − 10) ∥ (1 − (10↑𝑘)))
5448zcnd 12646 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (10↑𝑘) ∈ ℂ)
55 negsubdi2 11488 . . . . . . . . . . . . 13 (((10↑𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → -((10↑𝑘) − 1) = (1 − (10↑𝑘)))
5654, 16, 55sylancl 586 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → -((10↑𝑘) − 1) = (1 − (10↑𝑘)))
5753, 56breqtrrd 5138 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (1 − 10) ∥ -((10↑𝑘) − 1))
58 peano2zm 12583 . . . . . . . . . . . . 13 ((10↑𝑘) ∈ ℤ → ((10↑𝑘) − 1) ∈ ℤ)
5948, 58syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((10↑𝑘) − 1) ∈ ℤ)
60 dvdsnegb 16250 . . . . . . . . . . . 12 (((1 − 10) ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ (1 − 10) ∥ -((10↑𝑘) − 1)))
6143, 59, 60sylancr 587 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ (1 − 10) ∥ -((10↑𝑘) − 1)))
6257, 61mpbird 257 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (1 − 10) ∥ ((10↑𝑘) − 1))
63 negdvdsb 16249 . . . . . . . . . . 11 (((1 − 10) ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ -(1 − 10) ∥ ((10↑𝑘) − 1)))
6443, 59, 63sylancr 587 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ -(1 − 10) ∥ ((10↑𝑘) − 1)))
6562, 64mpbid 232 . . . . . . . . 9 (𝑘 ∈ ℕ0 → -(1 − 10) ∥ ((10↑𝑘) − 1))
6626, 65eqbrtrrid 5146 . . . . . . . 8 (𝑘 ∈ ℕ0 → (3 · 3) ∥ ((10↑𝑘) − 1))
67 muldvds1 16257 . . . . . . . . 9 ((3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → ((3 · 3) ∥ ((10↑𝑘) − 1) → 3 ∥ ((10↑𝑘) − 1)))
681, 1, 59, 67mp3an12i 1467 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((3 · 3) ∥ ((10↑𝑘) − 1) → 3 ∥ ((10↑𝑘) − 1)))
6966, 68mpd 15 . . . . . . 7 (𝑘 ∈ ℕ0 → 3 ∥ ((10↑𝑘) − 1))
709, 69syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ ((10↑𝑘) − 1))
7111, 58syl 17 . . . . . . 7 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((10↑𝑘) − 1) ∈ ℤ)
72 dvdsmultr2 16275 . . . . . . 7 ((3 ∈ ℤ ∧ (𝐹𝑘) ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → (3 ∥ ((10↑𝑘) − 1) → 3 ∥ ((𝐹𝑘) · ((10↑𝑘) − 1))))
731, 5, 71, 72mp3an2i 1468 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (3 ∥ ((10↑𝑘) − 1) → 3 ∥ ((𝐹𝑘) · ((10↑𝑘) − 1))))
7470, 73mpd 15 . . . . 5 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ ((𝐹𝑘) · ((10↑𝑘) − 1)))
755zcnd 12646 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐹𝑘) ∈ ℂ)
7611zcnd 12646 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (10↑𝑘) ∈ ℂ)
7775, 76muls1d 11645 . . . . 5 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹𝑘) · ((10↑𝑘) − 1)) = (((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)))
7874, 77breqtrd 5136 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ (((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)))
793, 2, 15, 78fsumdvds 16285 . . 3 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → 3 ∥ Σ𝑘 ∈ (0...𝑁)(((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)))
8012zcnd 12646 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹𝑘) · (10↑𝑘)) ∈ ℂ)
813, 80, 75fsumsub 15761 . . 3 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → Σ𝑘 ∈ (0...𝑁)(((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)) = (Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
8279, 81breqtrd 5136 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → 3 ∥ (Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
83 dvdssub2 16278 . 2 (((3 ∈ ℤ ∧ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ∈ ℤ ∧ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘) ∈ ℤ) ∧ 3 ∥ (Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹𝑘))) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
842, 13, 14, 82, 83syl31anc 1375 1 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412  -cneg 11413   / cdiv 11842  3c3 12249  9c9 12255  0cn0 12449  cz 12536  cdc 12656  ...cfz 13475  cexp 14033  Σcsu 15659  cdvds 16229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator