MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dvds Structured version   Visualization version   GIF version

Theorem 3dvds 15254
Description: A rule for divisibility by 3 of a number written in base 10. This is Metamath 100 proof #85. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 17-Jan-2015.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
3dvds ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑁

Proof of Theorem 3dvds
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 3z 11610 . . 3 3 ∈ ℤ
21a1i 11 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → 3 ∈ ℤ)
3 fzfid 12973 . . 3 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → (0...𝑁) ∈ Fin)
4 ffvelrn 6498 . . . . 5 ((𝐹:(0...𝑁)⟶ℤ ∧ 𝑘 ∈ (0...𝑁)) → (𝐹𝑘) ∈ ℤ)
54adantll 693 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐹𝑘) ∈ ℤ)
6 10nn 11714 . . . . . 6 10 ∈ ℕ
76nnzi 11601 . . . . 5 10 ∈ ℤ
8 elfznn0 12633 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
98adantl 467 . . . . 5 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
10 zexpcl 13075 . . . . 5 ((10 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (10↑𝑘) ∈ ℤ)
117, 9, 10sylancr 575 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (10↑𝑘) ∈ ℤ)
125, 11zmulcld 11688 . . 3 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹𝑘) · (10↑𝑘)) ∈ ℤ)
133, 12fsumzcl 14667 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ∈ ℤ)
143, 5fsumzcl 14667 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → Σ𝑘 ∈ (0...𝑁)(𝐹𝑘) ∈ ℤ)
1512, 5zsubcld 11687 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)) ∈ ℤ)
16 ax-1cn 10194 . . . . . . . . . . . 12 1 ∈ ℂ
176nncni 11230 . . . . . . . . . . . 12 10 ∈ ℂ
1816, 17negsubdi2i 10567 . . . . . . . . . . 11 -(1 − 10) = (10 − 1)
19 9p1e10 11696 . . . . . . . . . . . . 13 (9 + 1) = 10
2019eqcomi 2780 . . . . . . . . . . . 12 10 = (9 + 1)
2120oveq1i 6801 . . . . . . . . . . 11 (10 − 1) = ((9 + 1) − 1)
22 9cn 11308 . . . . . . . . . . . 12 9 ∈ ℂ
2322, 16pncan3oi 10497 . . . . . . . . . . 11 ((9 + 1) − 1) = 9
2418, 21, 233eqtri 2797 . . . . . . . . . 10 -(1 − 10) = 9
25 3t3e9 11380 . . . . . . . . . 10 (3 · 3) = 9
2624, 25eqtr4i 2796 . . . . . . . . 9 -(1 − 10) = (3 · 3)
2717a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ010 ∈ ℂ)
28 1re 10239 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
29 1lt10 11880 . . . . . . . . . . . . . . . . 17 1 < 10
3028, 29gtneii 10349 . . . . . . . . . . . . . . . 16 10 ≠ 1
3130a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ010 ≠ 1)
32 id 22 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
3327, 31, 32geoser 14799 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → Σ𝑗 ∈ (0...(𝑘 − 1))(10↑𝑗) = ((1 − (10↑𝑘)) / (1 − 10)))
34 fzfid 12973 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (0...(𝑘 − 1)) ∈ Fin)
35 elfznn0 12633 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...(𝑘 − 1)) → 𝑗 ∈ ℕ0)
3635adantl 467 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0𝑗 ∈ (0...(𝑘 − 1))) → 𝑗 ∈ ℕ0)
37 zexpcl 13075 . . . . . . . . . . . . . . . 16 ((10 ∈ ℤ ∧ 𝑗 ∈ ℕ0) → (10↑𝑗) ∈ ℤ)
387, 36, 37sylancr 575 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0𝑗 ∈ (0...(𝑘 − 1))) → (10↑𝑗) ∈ ℤ)
3934, 38fsumzcl 14667 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → Σ𝑗 ∈ (0...(𝑘 − 1))(10↑𝑗) ∈ ℤ)
4033, 39eqeltrrd 2851 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → ((1 − (10↑𝑘)) / (1 − 10)) ∈ ℤ)
41 1z 11607 . . . . . . . . . . . . . . 15 1 ∈ ℤ
42 zsubcl 11619 . . . . . . . . . . . . . . 15 ((1 ∈ ℤ ∧ 10 ∈ ℤ) → (1 − 10) ∈ ℤ)
4341, 7, 42mp2an 672 . . . . . . . . . . . . . 14 (1 − 10) ∈ ℤ
4428, 29ltneii 10350 . . . . . . . . . . . . . . 15 1 ≠ 10
4516, 17subeq0i 10561 . . . . . . . . . . . . . . . 16 ((1 − 10) = 0 ↔ 1 = 10)
4645necon3bii 2995 . . . . . . . . . . . . . . 15 ((1 − 10) ≠ 0 ↔ 1 ≠ 10)
4744, 46mpbir 221 . . . . . . . . . . . . . 14 (1 − 10) ≠ 0
487, 32, 10sylancr 575 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (10↑𝑘) ∈ ℤ)
49 zsubcl 11619 . . . . . . . . . . . . . . 15 ((1 ∈ ℤ ∧ (10↑𝑘) ∈ ℤ) → (1 − (10↑𝑘)) ∈ ℤ)
5041, 48, 49sylancr 575 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (1 − (10↑𝑘)) ∈ ℤ)
51 dvdsval2 15185 . . . . . . . . . . . . . 14 (((1 − 10) ∈ ℤ ∧ (1 − 10) ≠ 0 ∧ (1 − (10↑𝑘)) ∈ ℤ) → ((1 − 10) ∥ (1 − (10↑𝑘)) ↔ ((1 − (10↑𝑘)) / (1 − 10)) ∈ ℤ))
5243, 47, 50, 51mp3an12i 1576 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → ((1 − 10) ∥ (1 − (10↑𝑘)) ↔ ((1 − (10↑𝑘)) / (1 − 10)) ∈ ℤ))
5340, 52mpbird 247 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (1 − 10) ∥ (1 − (10↑𝑘)))
5448zcnd 11683 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (10↑𝑘) ∈ ℂ)
55 negsubdi2 10540 . . . . . . . . . . . . 13 (((10↑𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → -((10↑𝑘) − 1) = (1 − (10↑𝑘)))
5654, 16, 55sylancl 574 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → -((10↑𝑘) − 1) = (1 − (10↑𝑘)))
5753, 56breqtrrd 4814 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (1 − 10) ∥ -((10↑𝑘) − 1))
58 peano2zm 11620 . . . . . . . . . . . . 13 ((10↑𝑘) ∈ ℤ → ((10↑𝑘) − 1) ∈ ℤ)
5948, 58syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((10↑𝑘) − 1) ∈ ℤ)
60 dvdsnegb 15201 . . . . . . . . . . . 12 (((1 − 10) ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ (1 − 10) ∥ -((10↑𝑘) − 1)))
6143, 59, 60sylancr 575 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ (1 − 10) ∥ -((10↑𝑘) − 1)))
6257, 61mpbird 247 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (1 − 10) ∥ ((10↑𝑘) − 1))
63 negdvdsb 15200 . . . . . . . . . . 11 (((1 − 10) ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ -(1 − 10) ∥ ((10↑𝑘) − 1)))
6443, 59, 63sylancr 575 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((1 − 10) ∥ ((10↑𝑘) − 1) ↔ -(1 − 10) ∥ ((10↑𝑘) − 1)))
6562, 64mpbid 222 . . . . . . . . 9 (𝑘 ∈ ℕ0 → -(1 − 10) ∥ ((10↑𝑘) − 1))
6626, 65syl5eqbrr 4822 . . . . . . . 8 (𝑘 ∈ ℕ0 → (3 · 3) ∥ ((10↑𝑘) − 1))
67 muldvds1 15208 . . . . . . . . 9 ((3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → ((3 · 3) ∥ ((10↑𝑘) − 1) → 3 ∥ ((10↑𝑘) − 1)))
681, 1, 59, 67mp3an12i 1576 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((3 · 3) ∥ ((10↑𝑘) − 1) → 3 ∥ ((10↑𝑘) − 1)))
6966, 68mpd 15 . . . . . . 7 (𝑘 ∈ ℕ0 → 3 ∥ ((10↑𝑘) − 1))
709, 69syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ ((10↑𝑘) − 1))
7111, 58syl 17 . . . . . . 7 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((10↑𝑘) − 1) ∈ ℤ)
72 dvdsmultr2 15223 . . . . . . 7 ((3 ∈ ℤ ∧ (𝐹𝑘) ∈ ℤ ∧ ((10↑𝑘) − 1) ∈ ℤ) → (3 ∥ ((10↑𝑘) − 1) → 3 ∥ ((𝐹𝑘) · ((10↑𝑘) − 1))))
731, 5, 71, 72mp3an2i 1577 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (3 ∥ ((10↑𝑘) − 1) → 3 ∥ ((𝐹𝑘) · ((10↑𝑘) − 1))))
7470, 73mpd 15 . . . . 5 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ ((𝐹𝑘) · ((10↑𝑘) − 1)))
755zcnd 11683 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐹𝑘) ∈ ℂ)
7611zcnd 11683 . . . . . 6 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → (10↑𝑘) ∈ ℂ)
7775, 76muls1d 10691 . . . . 5 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹𝑘) · ((10↑𝑘) − 1)) = (((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)))
7874, 77breqtrd 4812 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → 3 ∥ (((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)))
793, 2, 15, 78fsumdvds 15232 . . 3 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → 3 ∥ Σ𝑘 ∈ (0...𝑁)(((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)))
8012zcnd 11683 . . . 4 (((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐹𝑘) · (10↑𝑘)) ∈ ℂ)
813, 80, 75fsumsub 14720 . . 3 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → Σ𝑘 ∈ (0...𝑁)(((𝐹𝑘) · (10↑𝑘)) − (𝐹𝑘)) = (Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
8279, 81breqtrd 4812 . 2 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → 3 ∥ (Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
83 dvdssub2 15225 . 2 (((3 ∈ ℤ ∧ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ∈ ℤ ∧ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘) ∈ ℤ) ∧ 3 ∥ (Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) − Σ𝑘 ∈ (0...𝑁)(𝐹𝑘))) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
842, 13, 14, 82, 83syl31anc 1479 1 ((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶ℤ) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹𝑘) · (10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4786  wf 6025  cfv 6029  (class class class)co 6791  cc 10134  0cc0 10136  1c1 10137   + caddc 10139   · cmul 10141  cmin 10466  -cneg 10467   / cdiv 10884  3c3 11271  9c9 11277  0cn0 11492  cz 11577  cdc 11693  ...cfz 12526  cexp 13060  Σcsu 14617  cdvds 15182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-oadd 7715  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-sup 8502  df-oi 8569  df-card 8963  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-z 11578  df-dec 11694  df-uz 11887  df-rp 12029  df-fz 12527  df-fzo 12667  df-seq 13002  df-exp 13061  df-hash 13315  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-clim 14420  df-sum 14618  df-dvds 15183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator