Step | Hyp | Ref
| Expression |
1 | | 3z 12591 |
. . 3
β’ 3 β
β€ |
2 | 1 | a1i 11 |
. 2
β’ ((π β β0
β§ πΉ:(0...π)βΆβ€) β 3
β β€) |
3 | | fzfid 13934 |
. . 3
β’ ((π β β0
β§ πΉ:(0...π)βΆβ€) β
(0...π) β
Fin) |
4 | | ffvelcdm 7080 |
. . . . 5
β’ ((πΉ:(0...π)βΆβ€ β§ π β (0...π)) β (πΉβπ) β β€) |
5 | 4 | adantll 712 |
. . . 4
β’ (((π β β0
β§ πΉ:(0...π)βΆβ€) β§ π β (0...π)) β (πΉβπ) β β€) |
6 | | 10nn 12689 |
. . . . . 6
β’ ;10 β β |
7 | 6 | nnzi 12582 |
. . . . 5
β’ ;10 β β€ |
8 | | elfznn0 13590 |
. . . . . 6
β’ (π β (0...π) β π β β0) |
9 | 8 | adantl 482 |
. . . . 5
β’ (((π β β0
β§ πΉ:(0...π)βΆβ€) β§ π β (0...π)) β π β β0) |
10 | | zexpcl 14038 |
. . . . 5
β’ ((;10 β β€ β§ π β β0)
β (;10βπ) β
β€) |
11 | 7, 9, 10 | sylancr 587 |
. . . 4
β’ (((π β β0
β§ πΉ:(0...π)βΆβ€) β§ π β (0...π)) β (;10βπ) β β€) |
12 | 5, 11 | zmulcld 12668 |
. . 3
β’ (((π β β0
β§ πΉ:(0...π)βΆβ€) β§ π β (0...π)) β ((πΉβπ) Β· (;10βπ)) β β€) |
13 | 3, 12 | fsumzcl 15677 |
. 2
β’ ((π β β0
β§ πΉ:(0...π)βΆβ€) β
Ξ£π β (0...π)((πΉβπ) Β· (;10βπ)) β β€) |
14 | 3, 5 | fsumzcl 15677 |
. 2
β’ ((π β β0
β§ πΉ:(0...π)βΆβ€) β
Ξ£π β (0...π)(πΉβπ) β β€) |
15 | 12, 5 | zsubcld 12667 |
. . . 4
β’ (((π β β0
β§ πΉ:(0...π)βΆβ€) β§ π β (0...π)) β (((πΉβπ) Β· (;10βπ)) β (πΉβπ)) β β€) |
16 | | ax-1cn 11164 |
. . . . . . . . . . . 12
β’ 1 β
β |
17 | 6 | nncni 12218 |
. . . . . . . . . . . 12
β’ ;10 β β |
18 | 16, 17 | negsubdi2i 11542 |
. . . . . . . . . . 11
β’ -(1
β ;10) = (;10 β 1) |
19 | | 9p1e10 12675 |
. . . . . . . . . . . . 13
β’ (9 + 1) =
;10 |
20 | 19 | eqcomi 2741 |
. . . . . . . . . . . 12
β’ ;10 = (9 + 1) |
21 | 20 | oveq1i 7415 |
. . . . . . . . . . 11
β’ (;10 β 1) = ((9 + 1) β
1) |
22 | | 9cn 12308 |
. . . . . . . . . . . 12
β’ 9 β
β |
23 | 22, 16 | pncan3oi 11472 |
. . . . . . . . . . 11
β’ ((9 + 1)
β 1) = 9 |
24 | 18, 21, 23 | 3eqtri 2764 |
. . . . . . . . . 10
β’ -(1
β ;10) = 9 |
25 | | 3t3e9 12375 |
. . . . . . . . . 10
β’ (3
Β· 3) = 9 |
26 | 24, 25 | eqtr4i 2763 |
. . . . . . . . 9
β’ -(1
β ;10) = (3 Β·
3) |
27 | 17 | a1i 11 |
. . . . . . . . . . . . . . 15
β’ (π β β0
β ;10 β
β) |
28 | | 1re 11210 |
. . . . . . . . . . . . . . . . 17
β’ 1 β
β |
29 | | 1lt10 12812 |
. . . . . . . . . . . . . . . . 17
β’ 1 <
;10 |
30 | 28, 29 | gtneii 11322 |
. . . . . . . . . . . . . . . 16
β’ ;10 β 1 |
31 | 30 | a1i 11 |
. . . . . . . . . . . . . . 15
β’ (π β β0
β ;10 β
1) |
32 | | id 22 |
. . . . . . . . . . . . . . 15
β’ (π β β0
β π β
β0) |
33 | 27, 31, 32 | geoser 15809 |
. . . . . . . . . . . . . 14
β’ (π β β0
β Ξ£π β
(0...(π β 1))(;10βπ) = ((1 β (;10βπ)) / (1 β ;10))) |
34 | | fzfid 13934 |
. . . . . . . . . . . . . . 15
β’ (π β β0
β (0...(π β 1))
β Fin) |
35 | | elfznn0 13590 |
. . . . . . . . . . . . . . . . 17
β’ (π β (0...(π β 1)) β π β β0) |
36 | 35 | adantl 482 |
. . . . . . . . . . . . . . . 16
β’ ((π β β0
β§ π β (0...(π β 1))) β π β
β0) |
37 | | zexpcl 14038 |
. . . . . . . . . . . . . . . 16
β’ ((;10 β β€ β§ π β β0)
β (;10βπ) β
β€) |
38 | 7, 36, 37 | sylancr 587 |
. . . . . . . . . . . . . . 15
β’ ((π β β0
β§ π β (0...(π β 1))) β (;10βπ) β β€) |
39 | 34, 38 | fsumzcl 15677 |
. . . . . . . . . . . . . 14
β’ (π β β0
β Ξ£π β
(0...(π β 1))(;10βπ) β β€) |
40 | 33, 39 | eqeltrrd 2834 |
. . . . . . . . . . . . 13
β’ (π β β0
β ((1 β (;10βπ)) / (1 β ;10)) β β€) |
41 | | 1z 12588 |
. . . . . . . . . . . . . . 15
β’ 1 β
β€ |
42 | | zsubcl 12600 |
. . . . . . . . . . . . . . 15
β’ ((1
β β€ β§ ;10 β
β€) β (1 β ;10)
β β€) |
43 | 41, 7, 42 | mp2an 690 |
. . . . . . . . . . . . . 14
β’ (1
β ;10) β
β€ |
44 | 28, 29 | ltneii 11323 |
. . . . . . . . . . . . . . 15
β’ 1 β
;10 |
45 | 16, 17 | subeq0i 11536 |
. . . . . . . . . . . . . . . 16
β’ ((1
β ;10) = 0 β 1 = ;10) |
46 | 45 | necon3bii 2993 |
. . . . . . . . . . . . . . 15
β’ ((1
β ;10) β 0 β 1 β
;10) |
47 | 44, 46 | mpbir 230 |
. . . . . . . . . . . . . 14
β’ (1
β ;10) β
0 |
48 | 7, 32, 10 | sylancr 587 |
. . . . . . . . . . . . . . 15
β’ (π β β0
β (;10βπ) β
β€) |
49 | | zsubcl 12600 |
. . . . . . . . . . . . . . 15
β’ ((1
β β€ β§ (;10βπ) β β€) β (1 β (;10βπ)) β β€) |
50 | 41, 48, 49 | sylancr 587 |
. . . . . . . . . . . . . 14
β’ (π β β0
β (1 β (;10βπ)) β
β€) |
51 | | dvdsval2 16196 |
. . . . . . . . . . . . . 14
β’ (((1
β ;10) β β€ β§
(1 β ;10) β 0 β§ (1
β (;10βπ)) β β€) β ((1
β ;10) β₯ (1 β
(;10βπ)) β ((1 β (;10βπ)) / (1 β ;10)) β β€)) |
52 | 43, 47, 50, 51 | mp3an12i 1465 |
. . . . . . . . . . . . 13
β’ (π β β0
β ((1 β ;10) β₯ (1
β (;10βπ)) β ((1 β (;10βπ)) / (1 β ;10)) β β€)) |
53 | 40, 52 | mpbird 256 |
. . . . . . . . . . . 12
β’ (π β β0
β (1 β ;10) β₯ (1
β (;10βπ))) |
54 | 48 | zcnd 12663 |
. . . . . . . . . . . . 13
β’ (π β β0
β (;10βπ) β
β) |
55 | | negsubdi2 11515 |
. . . . . . . . . . . . 13
β’ (((;10βπ) β β β§ 1 β β)
β -((;10βπ) β 1) = (1 β (;10βπ))) |
56 | 54, 16, 55 | sylancl 586 |
. . . . . . . . . . . 12
β’ (π β β0
β -((;10βπ) β 1) = (1 β (;10βπ))) |
57 | 53, 56 | breqtrrd 5175 |
. . . . . . . . . . 11
β’ (π β β0
β (1 β ;10) β₯
-((;10βπ) β 1)) |
58 | | peano2zm 12601 |
. . . . . . . . . . . . 13
β’ ((;10βπ) β β€ β ((;10βπ) β 1) β β€) |
59 | 48, 58 | syl 17 |
. . . . . . . . . . . 12
β’ (π β β0
β ((;10βπ) β 1) β
β€) |
60 | | dvdsnegb 16213 |
. . . . . . . . . . . 12
β’ (((1
β ;10) β β€ β§
((;10βπ) β 1) β β€) β ((1
β ;10) β₯ ((;10βπ) β 1) β (1 β ;10) β₯ -((;10βπ) β 1))) |
61 | 43, 59, 60 | sylancr 587 |
. . . . . . . . . . 11
β’ (π β β0
β ((1 β ;10) β₯
((;10βπ) β 1) β (1 β ;10) β₯ -((;10βπ) β 1))) |
62 | 57, 61 | mpbird 256 |
. . . . . . . . . 10
β’ (π β β0
β (1 β ;10) β₯
((;10βπ) β 1)) |
63 | | negdvdsb 16212 |
. . . . . . . . . . 11
β’ (((1
β ;10) β β€ β§
((;10βπ) β 1) β β€) β ((1
β ;10) β₯ ((;10βπ) β 1) β -(1 β ;10) β₯ ((;10βπ) β 1))) |
64 | 43, 59, 63 | sylancr 587 |
. . . . . . . . . 10
β’ (π β β0
β ((1 β ;10) β₯
((;10βπ) β 1) β -(1 β ;10) β₯ ((;10βπ) β 1))) |
65 | 62, 64 | mpbid 231 |
. . . . . . . . 9
β’ (π β β0
β -(1 β ;10) β₯
((;10βπ) β 1)) |
66 | 26, 65 | eqbrtrrid 5183 |
. . . . . . . 8
β’ (π β β0
β (3 Β· 3) β₯ ((;10βπ) β 1)) |
67 | | muldvds1 16220 |
. . . . . . . . 9
β’ ((3
β β€ β§ 3 β β€ β§ ((;10βπ) β 1) β β€) β ((3
Β· 3) β₯ ((;10βπ) β 1) β 3 β₯ ((;10βπ) β 1))) |
68 | 1, 1, 59, 67 | mp3an12i 1465 |
. . . . . . . 8
β’ (π β β0
β ((3 Β· 3) β₯ ((;10βπ) β 1) β 3 β₯ ((;10βπ) β 1))) |
69 | 66, 68 | mpd 15 |
. . . . . . 7
β’ (π β β0
β 3 β₯ ((;10βπ) β 1)) |
70 | 9, 69 | syl 17 |
. . . . . 6
β’ (((π β β0
β§ πΉ:(0...π)βΆβ€) β§ π β (0...π)) β 3 β₯ ((;10βπ) β 1)) |
71 | 11, 58 | syl 17 |
. . . . . . 7
β’ (((π β β0
β§ πΉ:(0...π)βΆβ€) β§ π β (0...π)) β ((;10βπ) β 1) β β€) |
72 | | dvdsmultr2 16237 |
. . . . . . 7
β’ ((3
β β€ β§ (πΉβπ) β β€ β§ ((;10βπ) β 1) β β€) β (3
β₯ ((;10βπ) β 1) β 3 β₯
((πΉβπ) Β· ((;10βπ) β 1)))) |
73 | 1, 5, 71, 72 | mp3an2i 1466 |
. . . . . 6
β’ (((π β β0
β§ πΉ:(0...π)βΆβ€) β§ π β (0...π)) β (3 β₯ ((;10βπ) β 1) β 3 β₯ ((πΉβπ) Β· ((;10βπ) β 1)))) |
74 | 70, 73 | mpd 15 |
. . . . 5
β’ (((π β β0
β§ πΉ:(0...π)βΆβ€) β§ π β (0...π)) β 3 β₯ ((πΉβπ) Β· ((;10βπ) β 1))) |
75 | 5 | zcnd 12663 |
. . . . . 6
β’ (((π β β0
β§ πΉ:(0...π)βΆβ€) β§ π β (0...π)) β (πΉβπ) β β) |
76 | 11 | zcnd 12663 |
. . . . . 6
β’ (((π β β0
β§ πΉ:(0...π)βΆβ€) β§ π β (0...π)) β (;10βπ) β β) |
77 | 75, 76 | muls1d 11670 |
. . . . 5
β’ (((π β β0
β§ πΉ:(0...π)βΆβ€) β§ π β (0...π)) β ((πΉβπ) Β· ((;10βπ) β 1)) = (((πΉβπ) Β· (;10βπ)) β (πΉβπ))) |
78 | 74, 77 | breqtrd 5173 |
. . . 4
β’ (((π β β0
β§ πΉ:(0...π)βΆβ€) β§ π β (0...π)) β 3 β₯ (((πΉβπ) Β· (;10βπ)) β (πΉβπ))) |
79 | 3, 2, 15, 78 | fsumdvds 16247 |
. . 3
β’ ((π β β0
β§ πΉ:(0...π)βΆβ€) β 3
β₯ Ξ£π β
(0...π)(((πΉβπ) Β· (;10βπ)) β (πΉβπ))) |
80 | 12 | zcnd 12663 |
. . . 4
β’ (((π β β0
β§ πΉ:(0...π)βΆβ€) β§ π β (0...π)) β ((πΉβπ) Β· (;10βπ)) β β) |
81 | 3, 80, 75 | fsumsub 15730 |
. . 3
β’ ((π β β0
β§ πΉ:(0...π)βΆβ€) β
Ξ£π β (0...π)(((πΉβπ) Β· (;10βπ)) β (πΉβπ)) = (Ξ£π β (0...π)((πΉβπ) Β· (;10βπ)) β Ξ£π β (0...π)(πΉβπ))) |
82 | 79, 81 | breqtrd 5173 |
. 2
β’ ((π β β0
β§ πΉ:(0...π)βΆβ€) β 3
β₯ (Ξ£π β
(0...π)((πΉβπ) Β· (;10βπ)) β Ξ£π β (0...π)(πΉβπ))) |
83 | | dvdssub2 16240 |
. 2
β’ (((3
β β€ β§ Ξ£π β (0...π)((πΉβπ) Β· (;10βπ)) β β€ β§ Ξ£π β (0...π)(πΉβπ) β β€) β§ 3 β₯
(Ξ£π β (0...π)((πΉβπ) Β· (;10βπ)) β Ξ£π β (0...π)(πΉβπ))) β (3 β₯ Ξ£π β (0...π)((πΉβπ) Β· (;10βπ)) β 3 β₯ Ξ£π β (0...π)(πΉβπ))) |
84 | 2, 13, 14, 82, 83 | syl31anc 1373 |
1
β’ ((π β β0
β§ πΉ:(0...π)βΆβ€) β (3
β₯ Ξ£π β
(0...π)((πΉβπ) Β· (;10βπ)) β 3 β₯ Ξ£π β (0...π)(πΉβπ))) |