![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 11prm | Structured version Visualization version GIF version |
Description: 11 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
11prm | ⊢ ;11 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12518 | . . 3 ⊢ 1 ∈ ℕ0 | |
2 | 1nn 12253 | . . 3 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | decnncl 12727 | . 2 ⊢ ;11 ∈ ℕ |
4 | 1lt10 12846 | . . 3 ⊢ 1 < ;10 | |
5 | 2, 1, 1, 4 | declti 12745 | . 2 ⊢ 1 < ;11 |
6 | 0nn0 12517 | . . 3 ⊢ 0 ∈ ℕ0 | |
7 | 2cn 12317 | . . . 4 ⊢ 2 ∈ ℂ | |
8 | 7 | mul02i 11433 | . . 3 ⊢ (0 · 2) = 0 |
9 | 1e0p1 12749 | . . 3 ⊢ 1 = (0 + 1) | |
10 | 1, 6, 8, 9 | dec2dvds 17031 | . 2 ⊢ ¬ 2 ∥ ;11 |
11 | 3nn 12321 | . . 3 ⊢ 3 ∈ ℕ | |
12 | 3nn0 12520 | . . 3 ⊢ 3 ∈ ℕ0 | |
13 | 2nn 12315 | . . 3 ⊢ 2 ∈ ℕ | |
14 | 3t3e9 12409 | . . . . 5 ⊢ (3 · 3) = 9 | |
15 | 14 | oveq1i 7430 | . . . 4 ⊢ ((3 · 3) + 2) = (9 + 2) |
16 | 9p2e11 12794 | . . . 4 ⊢ (9 + 2) = ;11 | |
17 | 15, 16 | eqtri 2756 | . . 3 ⊢ ((3 · 3) + 2) = ;11 |
18 | 2lt3 12414 | . . 3 ⊢ 2 < 3 | |
19 | 11, 12, 13, 17, 18 | ndvdsi 16388 | . 2 ⊢ ¬ 3 ∥ ;11 |
20 | 2nn0 12519 | . . 3 ⊢ 2 ∈ ℕ0 | |
21 | 5nn0 12522 | . . 3 ⊢ 5 ∈ ℕ0 | |
22 | 1lt2 12413 | . . 3 ⊢ 1 < 2 | |
23 | 1, 20, 1, 21, 4, 22 | decltc 12736 | . 2 ⊢ ;11 < ;25 |
24 | 3, 5, 10, 19, 23 | prmlem1 17076 | 1 ⊢ ;11 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 (class class class)co 7420 0cc0 11138 1c1 11139 + caddc 11141 · cmul 11143 2c2 12297 3c3 12298 5c5 12300 9c9 12304 ;cdc 12707 ℙcprime 16641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-2o 8487 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-rp 13007 df-fz 13517 df-seq 13999 df-exp 14059 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-dvds 16231 df-prm 16642 |
This theorem is referenced by: 60gcd7e1 41476 |
Copyright terms: Public domain | W3C validator |