| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 11prm | Structured version Visualization version GIF version | ||
| Description: 11 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
| Ref | Expression |
|---|---|
| 11prm | ⊢ ;11 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12522 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 2 | 1nn 12256 | . . 3 ⊢ 1 ∈ ℕ | |
| 3 | 1, 2 | decnncl 12733 | . 2 ⊢ ;11 ∈ ℕ |
| 4 | 1lt10 12852 | . . 3 ⊢ 1 < ;10 | |
| 5 | 2, 1, 1, 4 | declti 12751 | . 2 ⊢ 1 < ;11 |
| 6 | 0nn0 12521 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 7 | 2cn 12320 | . . . 4 ⊢ 2 ∈ ℂ | |
| 8 | 7 | mul02i 11429 | . . 3 ⊢ (0 · 2) = 0 |
| 9 | 1e0p1 12755 | . . 3 ⊢ 1 = (0 + 1) | |
| 10 | 1, 6, 8, 9 | dec2dvds 17088 | . 2 ⊢ ¬ 2 ∥ ;11 |
| 11 | 3nn 12324 | . . 3 ⊢ 3 ∈ ℕ | |
| 12 | 3nn0 12524 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 13 | 2nn 12318 | . . 3 ⊢ 2 ∈ ℕ | |
| 14 | 3t3e9 12412 | . . . . 5 ⊢ (3 · 3) = 9 | |
| 15 | 14 | oveq1i 7420 | . . . 4 ⊢ ((3 · 3) + 2) = (9 + 2) |
| 16 | 9p2e11 12800 | . . . 4 ⊢ (9 + 2) = ;11 | |
| 17 | 15, 16 | eqtri 2759 | . . 3 ⊢ ((3 · 3) + 2) = ;11 |
| 18 | 2lt3 12417 | . . 3 ⊢ 2 < 3 | |
| 19 | 11, 12, 13, 17, 18 | ndvdsi 16436 | . 2 ⊢ ¬ 3 ∥ ;11 |
| 20 | 2nn0 12523 | . . 3 ⊢ 2 ∈ ℕ0 | |
| 21 | 5nn0 12526 | . . 3 ⊢ 5 ∈ ℕ0 | |
| 22 | 1lt2 12416 | . . 3 ⊢ 1 < 2 | |
| 23 | 1, 20, 1, 21, 4, 22 | decltc 12742 | . 2 ⊢ ;11 < ;25 |
| 24 | 3, 5, 10, 19, 23 | prmlem1 17132 | 1 ⊢ ;11 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7410 0cc0 11134 1c1 11135 + caddc 11137 · cmul 11139 2c2 12300 3c3 12301 5c5 12303 9c9 12307 ;cdc 12713 ℙcprime 16695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-rp 13014 df-fz 13530 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-dvds 16278 df-prm 16696 |
| This theorem is referenced by: 60gcd7e1 42023 |
| Copyright terms: Public domain | W3C validator |