Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 11prm | Structured version Visualization version GIF version |
Description: 11 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
11prm | ⊢ ;11 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12277 | . . 3 ⊢ 1 ∈ ℕ0 | |
2 | 1nn 12012 | . . 3 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | decnncl 12485 | . 2 ⊢ ;11 ∈ ℕ |
4 | 1lt10 12604 | . . 3 ⊢ 1 < ;10 | |
5 | 2, 1, 1, 4 | declti 12503 | . 2 ⊢ 1 < ;11 |
6 | 0nn0 12276 | . . 3 ⊢ 0 ∈ ℕ0 | |
7 | 2cn 12076 | . . . 4 ⊢ 2 ∈ ℂ | |
8 | 7 | mul02i 11192 | . . 3 ⊢ (0 · 2) = 0 |
9 | 1e0p1 12507 | . . 3 ⊢ 1 = (0 + 1) | |
10 | 1, 6, 8, 9 | dec2dvds 16792 | . 2 ⊢ ¬ 2 ∥ ;11 |
11 | 3nn 12080 | . . 3 ⊢ 3 ∈ ℕ | |
12 | 3nn0 12279 | . . 3 ⊢ 3 ∈ ℕ0 | |
13 | 2nn 12074 | . . 3 ⊢ 2 ∈ ℕ | |
14 | 3t3e9 12168 | . . . . 5 ⊢ (3 · 3) = 9 | |
15 | 14 | oveq1i 7305 | . . . 4 ⊢ ((3 · 3) + 2) = (9 + 2) |
16 | 9p2e11 12552 | . . . 4 ⊢ (9 + 2) = ;11 | |
17 | 15, 16 | eqtri 2761 | . . 3 ⊢ ((3 · 3) + 2) = ;11 |
18 | 2lt3 12173 | . . 3 ⊢ 2 < 3 | |
19 | 11, 12, 13, 17, 18 | ndvdsi 16149 | . 2 ⊢ ¬ 3 ∥ ;11 |
20 | 2nn0 12278 | . . 3 ⊢ 2 ∈ ℕ0 | |
21 | 5nn0 12281 | . . 3 ⊢ 5 ∈ ℕ0 | |
22 | 1lt2 12172 | . . 3 ⊢ 1 < 2 | |
23 | 1, 20, 1, 21, 4, 22 | decltc 12494 | . 2 ⊢ ;11 < ;25 |
24 | 3, 5, 10, 19, 23 | prmlem1 16837 | 1 ⊢ ;11 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2101 (class class class)co 7295 0cc0 10899 1c1 10900 + caddc 10902 · cmul 10904 2c2 12056 3c3 12057 5c5 12059 9c9 12063 ;cdc 12465 ℙcprime 16404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-pre-sup 10977 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-2o 8318 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-sup 9229 df-inf 9230 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-z 12348 df-dec 12466 df-uz 12611 df-rp 12759 df-fz 13268 df-seq 13750 df-exp 13811 df-cj 14838 df-re 14839 df-im 14840 df-sqrt 14974 df-abs 14975 df-dvds 15992 df-prm 16405 |
This theorem is referenced by: 60gcd7e1 40039 |
Copyright terms: Public domain | W3C validator |