Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem4a Structured version   Visualization version   GIF version

Theorem 4atlem4a 39596
Description: Lemma for 4at 39610. Frequently used associative law. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem4a (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆)) = (𝑃 ((𝑄 𝑅) 𝑆)))

Proof of Theorem 4atlem4a
StepHypRef Expression
1 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ HL)
21hllatd 39360 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ Lat)
3 simpl2 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃𝐴)
4 eqid 2737 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
5 4at.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5atbase 39285 . . . 4 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
73, 6syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃 ∈ (Base‘𝐾))
8 simpl3 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄𝐴)
94, 5atbase 39285 . . . 4 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
108, 9syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄 ∈ (Base‘𝐾))
11 simprl 771 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑅𝐴)
12 simprr 773 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
13 4at.j . . . . 5 = (join‘𝐾)
144, 13, 5hlatjcl 39363 . . . 4 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
151, 11, 12, 14syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑅 𝑆) ∈ (Base‘𝐾))
164, 13latjass 18550 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾))) → ((𝑃 𝑄) (𝑅 𝑆)) = (𝑃 (𝑄 (𝑅 𝑆))))
172, 7, 10, 15, 16syl13anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆)) = (𝑃 (𝑄 (𝑅 𝑆))))
1813, 5hlatjass 39366 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → ((𝑄 𝑅) 𝑆) = (𝑄 (𝑅 𝑆)))
191, 8, 11, 12, 18syl13anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑄 𝑅) 𝑆) = (𝑄 (𝑅 𝑆)))
2019oveq2d 7454 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 ((𝑄 𝑅) 𝑆)) = (𝑃 (𝑄 (𝑅 𝑆))))
2117, 20eqtr4d 2780 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆)) = (𝑃 ((𝑄 𝑅) 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  cfv 6569  (class class class)co 7438  Basecbs 17254  lecple 17314  joincjn 18378  Latclat 18498  Atomscatm 39259  HLchlt 39346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-proset 18361  df-poset 18380  df-lub 18413  df-glb 18414  df-join 18415  df-meet 18416  df-lat 18499  df-ats 39263  df-atl 39294  df-cvlat 39318  df-hlat 39347
This theorem is referenced by:  4atlem12a  39607
  Copyright terms: Public domain W3C validator