![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atlem4a | Structured version Visualization version GIF version |
Description: Lemma for 4at 39218. Frequently used associative law. (Contributed by NM, 9-Jul-2012.) |
Ref | Expression |
---|---|
4at.l | ⊢ ≤ = (le‘𝐾) |
4at.j | ⊢ ∨ = (join‘𝐾) |
4at.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
4atlem4a | ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = (𝑃 ∨ ((𝑄 ∨ 𝑅) ∨ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1188 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐾 ∈ HL) | |
2 | 1 | hllatd 38968 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐾 ∈ Lat) |
3 | simpl2 1189 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | |
4 | eqid 2725 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | 4at.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 4, 5 | atbase 38893 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
7 | 3, 6 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑃 ∈ (Base‘𝐾)) |
8 | simpl3 1190 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑄 ∈ 𝐴) | |
9 | 4, 5 | atbase 38893 | . . . 4 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
10 | 8, 9 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑄 ∈ (Base‘𝐾)) |
11 | simprl 769 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑅 ∈ 𝐴) | |
12 | simprr 771 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑆 ∈ 𝐴) | |
13 | 4at.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
14 | 4, 13, 5 | hlatjcl 38971 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
15 | 1, 11, 12, 14 | syl3anc 1368 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
16 | 4, 13 | latjass 18483 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = (𝑃 ∨ (𝑄 ∨ (𝑅 ∨ 𝑆)))) |
17 | 2, 7, 10, 15, 16 | syl13anc 1369 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = (𝑃 ∨ (𝑄 ∨ (𝑅 ∨ 𝑆)))) |
18 | 13, 5 | hlatjass 38974 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑄 ∨ 𝑅) ∨ 𝑆) = (𝑄 ∨ (𝑅 ∨ 𝑆))) |
19 | 1, 8, 11, 12, 18 | syl13anc 1369 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑄 ∨ 𝑅) ∨ 𝑆) = (𝑄 ∨ (𝑅 ∨ 𝑆))) |
20 | 19 | oveq2d 7435 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ ((𝑄 ∨ 𝑅) ∨ 𝑆)) = (𝑃 ∨ (𝑄 ∨ (𝑅 ∨ 𝑆)))) |
21 | 17, 20 | eqtr4d 2768 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = (𝑃 ∨ ((𝑄 ∨ 𝑅) ∨ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 Basecbs 17188 lecple 17248 joincjn 18311 Latclat 18431 Atomscatm 38867 HLchlt 38954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-proset 18295 df-poset 18313 df-lub 18346 df-glb 18347 df-join 18348 df-meet 18349 df-lat 18432 df-ats 38871 df-atl 38902 df-cvlat 38926 df-hlat 38955 |
This theorem is referenced by: 4atlem12a 39215 |
Copyright terms: Public domain | W3C validator |