Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem4a Structured version   Visualization version   GIF version

Theorem 4atlem4a 37363
Description: Lemma for 4at 37377. Frequently used associative law. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem4a (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆)) = (𝑃 ((𝑄 𝑅) 𝑆)))

Proof of Theorem 4atlem4a
StepHypRef Expression
1 simpl1 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ HL)
21hllatd 37128 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ Lat)
3 simpl2 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃𝐴)
4 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
5 4at.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5atbase 37053 . . . 4 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
73, 6syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃 ∈ (Base‘𝐾))
8 simpl3 1195 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄𝐴)
94, 5atbase 37053 . . . 4 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
108, 9syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄 ∈ (Base‘𝐾))
11 simprl 771 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑅𝐴)
12 simprr 773 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
13 4at.j . . . . 5 = (join‘𝐾)
144, 13, 5hlatjcl 37131 . . . 4 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
151, 11, 12, 14syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑅 𝑆) ∈ (Base‘𝐾))
164, 13latjass 18002 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾))) → ((𝑃 𝑄) (𝑅 𝑆)) = (𝑃 (𝑄 (𝑅 𝑆))))
172, 7, 10, 15, 16syl13anc 1374 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆)) = (𝑃 (𝑄 (𝑅 𝑆))))
1813, 5hlatjass 37134 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → ((𝑄 𝑅) 𝑆) = (𝑄 (𝑅 𝑆)))
191, 8, 11, 12, 18syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑄 𝑅) 𝑆) = (𝑄 (𝑅 𝑆)))
2019oveq2d 7238 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 ((𝑄 𝑅) 𝑆)) = (𝑃 (𝑄 (𝑅 𝑆))))
2117, 20eqtr4d 2781 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆)) = (𝑃 ((𝑄 𝑅) 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2111  cfv 6389  (class class class)co 7222  Basecbs 16773  lecple 16822  joincjn 17831  Latclat 17950  Atomscatm 37027  HLchlt 37114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5188  ax-sep 5201  ax-nul 5208  ax-pow 5267  ax-pr 5331  ax-un 7532
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3417  df-sbc 3704  df-csb 3821  df-dif 3878  df-un 3880  df-in 3882  df-ss 3892  df-nul 4247  df-if 4449  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4829  df-iun 4915  df-br 5063  df-opab 5125  df-mpt 5145  df-id 5464  df-xp 5566  df-rel 5567  df-cnv 5568  df-co 5569  df-dm 5570  df-rn 5571  df-res 5572  df-ima 5573  df-iota 6347  df-fun 6391  df-fn 6392  df-f 6393  df-f1 6394  df-fo 6395  df-f1o 6396  df-fv 6397  df-riota 7179  df-ov 7225  df-oprab 7226  df-proset 17815  df-poset 17833  df-lub 17865  df-glb 17866  df-join 17867  df-meet 17868  df-lat 17951  df-ats 37031  df-atl 37062  df-cvlat 37086  df-hlat 37115
This theorem is referenced by:  4atlem12a  37374
  Copyright terms: Public domain W3C validator