Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem12a Structured version   Visualization version   GIF version

Theorem 4atlem12a 38469
Description: Lemma for 4at 38472. Substitute 𝑇 for 𝑃. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l ≀ = (leβ€˜πΎ)
4at.j ∨ = (joinβ€˜πΎ)
4at.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
4atlem12a (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ (𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ↔ ((𝑃 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))

Proof of Theorem 4atlem12a
StepHypRef Expression
1 simp11 1203 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ 𝐾 ∈ HL)
2 simp12 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ 𝑃 ∈ 𝐴)
3 simp13 1205 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ 𝑇 ∈ 𝐴)
41hllatd 38222 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ 𝐾 ∈ Lat)
5 simp21 1206 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ π‘ˆ ∈ 𝐴)
6 simp22 1207 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ 𝑉 ∈ 𝐴)
7 eqid 2732 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
8 4at.j . . . . . 6 ∨ = (joinβ€˜πΎ)
9 4at.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
107, 8, 9hlatjcl 38225 . . . . 5 ((𝐾 ∈ HL ∧ π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) β†’ (π‘ˆ ∨ 𝑉) ∈ (Baseβ€˜πΎ))
111, 5, 6, 10syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ (π‘ˆ ∨ 𝑉) ∈ (Baseβ€˜πΎ))
12 simp23 1208 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ π‘Š ∈ 𝐴)
137, 9atbase 38147 . . . . 5 (π‘Š ∈ 𝐴 β†’ π‘Š ∈ (Baseβ€˜πΎ))
1412, 13syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ π‘Š ∈ (Baseβ€˜πΎ))
157, 8latjcl 18388 . . . 4 ((𝐾 ∈ Lat ∧ (π‘ˆ ∨ 𝑉) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∈ (Baseβ€˜πΎ))
164, 11, 14, 15syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∈ (Baseβ€˜πΎ))
17 simp3 1138 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š))
18 4at.l . . . 4 ≀ = (leβ€˜πΎ)
197, 18, 8, 9hlexchb2 38244 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ ((π‘ˆ ∨ 𝑉) ∨ π‘Š) ∈ (Baseβ€˜πΎ)) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ (𝑃 ≀ (𝑇 ∨ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) ↔ (𝑃 ∨ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) = (𝑇 ∨ ((π‘ˆ ∨ 𝑉) ∨ π‘Š))))
201, 2, 3, 16, 17, 19syl131anc 1383 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ (𝑃 ≀ (𝑇 ∨ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) ↔ (𝑃 ∨ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) = (𝑇 ∨ ((π‘ˆ ∨ 𝑉) ∨ π‘Š))))
2118, 8, 94atlem4a 38458 . . . 4 (((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) ∧ (𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) β†’ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) = (𝑇 ∨ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)))
221, 3, 5, 6, 12, 21syl32anc 1378 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) = (𝑇 ∨ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)))
2322breq2d 5159 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ (𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ↔ 𝑃 ≀ (𝑇 ∨ ((π‘ˆ ∨ 𝑉) ∨ π‘Š))))
2418, 8, 94atlem4a 38458 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) ∧ (𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) β†’ ((𝑃 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) = (𝑃 ∨ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)))
251, 2, 5, 6, 12, 24syl32anc 1378 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ ((𝑃 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) = (𝑃 ∨ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)))
2625, 22eqeq12d 2748 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ (((𝑃 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ↔ (𝑃 ∨ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) = (𝑇 ∨ ((π‘ˆ ∨ 𝑉) ∨ π‘Š))))
2720, 23, 263bitr4d 310 1 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) ∧ Β¬ 𝑃 ≀ ((π‘ˆ ∨ 𝑉) ∨ π‘Š)) β†’ (𝑃 ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ↔ ((𝑃 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  Latclat 18380  Atomscatm 38121  HLchlt 38208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-lat 18381  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209
This theorem is referenced by:  4atlem12b  38470
  Copyright terms: Public domain W3C validator