Proof of Theorem 4atlem12a
| Step | Hyp | Ref
| Expression |
| 1 | | simp11 1204 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → 𝐾 ∈ HL) |
| 2 | | simp12 1205 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → 𝑃 ∈ 𝐴) |
| 3 | | simp13 1206 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → 𝑇 ∈ 𝐴) |
| 4 | 1 | hllatd 39365 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → 𝐾 ∈ Lat) |
| 5 | | simp21 1207 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → 𝑈 ∈ 𝐴) |
| 6 | | simp22 1208 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → 𝑉 ∈ 𝐴) |
| 7 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 8 | | 4at.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
| 9 | | 4at.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
| 10 | 7, 8, 9 | hlatjcl 39368 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) → (𝑈 ∨ 𝑉) ∈ (Base‘𝐾)) |
| 11 | 1, 5, 6, 10 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → (𝑈 ∨ 𝑉) ∈ (Base‘𝐾)) |
| 12 | | simp23 1209 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → 𝑊 ∈ 𝐴) |
| 13 | 7, 9 | atbase 39290 |
. . . . 5
⊢ (𝑊 ∈ 𝐴 → 𝑊 ∈ (Base‘𝐾)) |
| 14 | 12, 13 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
| 15 | 7, 8 | latjcl 18484 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑈 ∨ 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑈 ∨ 𝑉) ∨ 𝑊) ∈ (Base‘𝐾)) |
| 16 | 4, 11, 14, 15 | syl3anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → ((𝑈 ∨ 𝑉) ∨ 𝑊) ∈ (Base‘𝐾)) |
| 17 | | simp3 1139 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) |
| 18 | | 4at.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 19 | 7, 18, 8, 9 | hlexchb2 39387 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ ((𝑈 ∨ 𝑉) ∨ 𝑊) ∈ (Base‘𝐾)) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → (𝑃 ≤ (𝑇 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)) ↔ (𝑃 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)) = (𝑇 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)))) |
| 20 | 1, 2, 3, 16, 17, 19 | syl131anc 1385 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → (𝑃 ≤ (𝑇 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)) ↔ (𝑃 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)) = (𝑇 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)))) |
| 21 | 18, 8, 9 | 4atlem4a 39601 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) ∧ (𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) → ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) = (𝑇 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊))) |
| 22 | 1, 3, 5, 6, 12, 21 | syl32anc 1380 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) = (𝑇 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊))) |
| 23 | 22 | breq2d 5155 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → (𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ↔ 𝑃 ≤ (𝑇 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)))) |
| 24 | 18, 8, 9 | 4atlem4a 39601 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) ∧ (𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) → ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) = (𝑃 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊))) |
| 25 | 1, 2, 5, 6, 12, 24 | syl32anc 1380 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) = (𝑃 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊))) |
| 26 | 25, 22 | eqeq12d 2753 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → (((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) = ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ↔ (𝑃 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)) = (𝑇 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)))) |
| 27 | 20, 23, 26 | 3bitr4d 311 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → (𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ↔ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) = ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |