Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem12a Structured version   Visualization version   GIF version

Theorem 4atlem12a 38073
Description: Lemma for 4at 38076. Substitute 𝑇 for 𝑃. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem12a (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → (𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ↔ ((𝑃 𝑈) (𝑉 𝑊)) = ((𝑇 𝑈) (𝑉 𝑊))))

Proof of Theorem 4atlem12a
StepHypRef Expression
1 simp11 1203 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → 𝐾 ∈ HL)
2 simp12 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → 𝑃𝐴)
3 simp13 1205 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → 𝑇𝐴)
41hllatd 37826 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → 𝐾 ∈ Lat)
5 simp21 1206 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → 𝑈𝐴)
6 simp22 1207 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → 𝑉𝐴)
7 eqid 2736 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
8 4at.j . . . . . 6 = (join‘𝐾)
9 4at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
107, 8, 9hlatjcl 37829 . . . . 5 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴) → (𝑈 𝑉) ∈ (Base‘𝐾))
111, 5, 6, 10syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → (𝑈 𝑉) ∈ (Base‘𝐾))
12 simp23 1208 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → 𝑊𝐴)
137, 9atbase 37751 . . . . 5 (𝑊𝐴𝑊 ∈ (Base‘𝐾))
1412, 13syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → 𝑊 ∈ (Base‘𝐾))
157, 8latjcl 18328 . . . 4 ((𝐾 ∈ Lat ∧ (𝑈 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑈 𝑉) 𝑊) ∈ (Base‘𝐾))
164, 11, 14, 15syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → ((𝑈 𝑉) 𝑊) ∈ (Base‘𝐾))
17 simp3 1138 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → ¬ 𝑃 ((𝑈 𝑉) 𝑊))
18 4at.l . . . 4 = (le‘𝐾)
197, 18, 8, 9hlexchb2 37848 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑇𝐴 ∧ ((𝑈 𝑉) 𝑊) ∈ (Base‘𝐾)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → (𝑃 (𝑇 ((𝑈 𝑉) 𝑊)) ↔ (𝑃 ((𝑈 𝑉) 𝑊)) = (𝑇 ((𝑈 𝑉) 𝑊))))
201, 2, 3, 16, 17, 19syl131anc 1383 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → (𝑃 (𝑇 ((𝑈 𝑉) 𝑊)) ↔ (𝑃 ((𝑈 𝑉) 𝑊)) = (𝑇 ((𝑈 𝑉) 𝑊))))
2118, 8, 94atlem4a 38062 . . . 4 (((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) ∧ (𝑉𝐴𝑊𝐴)) → ((𝑇 𝑈) (𝑉 𝑊)) = (𝑇 ((𝑈 𝑉) 𝑊)))
221, 3, 5, 6, 12, 21syl32anc 1378 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → ((𝑇 𝑈) (𝑉 𝑊)) = (𝑇 ((𝑈 𝑉) 𝑊)))
2322breq2d 5117 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → (𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ↔ 𝑃 (𝑇 ((𝑈 𝑉) 𝑊))))
2418, 8, 94atlem4a 38062 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) ∧ (𝑉𝐴𝑊𝐴)) → ((𝑃 𝑈) (𝑉 𝑊)) = (𝑃 ((𝑈 𝑉) 𝑊)))
251, 2, 5, 6, 12, 24syl32anc 1378 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → ((𝑃 𝑈) (𝑉 𝑊)) = (𝑃 ((𝑈 𝑉) 𝑊)))
2625, 22eqeq12d 2752 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → (((𝑃 𝑈) (𝑉 𝑊)) = ((𝑇 𝑈) (𝑉 𝑊)) ↔ (𝑃 ((𝑈 𝑉) 𝑊)) = (𝑇 ((𝑈 𝑉) 𝑊))))
2720, 23, 263bitr4d 310 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → (𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ↔ ((𝑃 𝑈) (𝑉 𝑊)) = ((𝑇 𝑈) (𝑉 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  joincjn 18200  Latclat 18320  Atomscatm 37725  HLchlt 37812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-proset 18184  df-poset 18202  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-lat 18321  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813
This theorem is referenced by:  4atlem12b  38074
  Copyright terms: Public domain W3C validator