Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem12a Structured version   Visualization version   GIF version

Theorem 4atlem12a 36227
Description: Lemma for 4at 36230. Substitute 𝑇 for 𝑃. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem12a (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → (𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ↔ ((𝑃 𝑈) (𝑉 𝑊)) = ((𝑇 𝑈) (𝑉 𝑊))))

Proof of Theorem 4atlem12a
StepHypRef Expression
1 simp11 1194 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → 𝐾 ∈ HL)
2 simp12 1195 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → 𝑃𝐴)
3 simp13 1196 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → 𝑇𝐴)
41hllatd 35981 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → 𝐾 ∈ Lat)
5 simp21 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → 𝑈𝐴)
6 simp22 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → 𝑉𝐴)
7 eqid 2793 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
8 4at.j . . . . . 6 = (join‘𝐾)
9 4at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
107, 8, 9hlatjcl 35984 . . . . 5 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴) → (𝑈 𝑉) ∈ (Base‘𝐾))
111, 5, 6, 10syl3anc 1362 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → (𝑈 𝑉) ∈ (Base‘𝐾))
12 simp23 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → 𝑊𝐴)
137, 9atbase 35906 . . . . 5 (𝑊𝐴𝑊 ∈ (Base‘𝐾))
1412, 13syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → 𝑊 ∈ (Base‘𝐾))
157, 8latjcl 17478 . . . 4 ((𝐾 ∈ Lat ∧ (𝑈 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑈 𝑉) 𝑊) ∈ (Base‘𝐾))
164, 11, 14, 15syl3anc 1362 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → ((𝑈 𝑉) 𝑊) ∈ (Base‘𝐾))
17 simp3 1129 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → ¬ 𝑃 ((𝑈 𝑉) 𝑊))
18 4at.l . . . 4 = (le‘𝐾)
197, 18, 8, 9hlexchb2 36002 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑇𝐴 ∧ ((𝑈 𝑉) 𝑊) ∈ (Base‘𝐾)) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → (𝑃 (𝑇 ((𝑈 𝑉) 𝑊)) ↔ (𝑃 ((𝑈 𝑉) 𝑊)) = (𝑇 ((𝑈 𝑉) 𝑊))))
201, 2, 3, 16, 17, 19syl131anc 1374 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → (𝑃 (𝑇 ((𝑈 𝑉) 𝑊)) ↔ (𝑃 ((𝑈 𝑉) 𝑊)) = (𝑇 ((𝑈 𝑉) 𝑊))))
2118, 8, 94atlem4a 36216 . . . 4 (((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) ∧ (𝑉𝐴𝑊𝐴)) → ((𝑇 𝑈) (𝑉 𝑊)) = (𝑇 ((𝑈 𝑉) 𝑊)))
221, 3, 5, 6, 12, 21syl32anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → ((𝑇 𝑈) (𝑉 𝑊)) = (𝑇 ((𝑈 𝑉) 𝑊)))
2322breq2d 4968 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → (𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ↔ 𝑃 (𝑇 ((𝑈 𝑉) 𝑊))))
2418, 8, 94atlem4a 36216 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) ∧ (𝑉𝐴𝑊𝐴)) → ((𝑃 𝑈) (𝑉 𝑊)) = (𝑃 ((𝑈 𝑉) 𝑊)))
251, 2, 5, 6, 12, 24syl32anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → ((𝑃 𝑈) (𝑉 𝑊)) = (𝑃 ((𝑈 𝑉) 𝑊)))
2625, 22eqeq12d 2808 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → (((𝑃 𝑈) (𝑉 𝑊)) = ((𝑇 𝑈) (𝑉 𝑊)) ↔ (𝑃 ((𝑈 𝑉) 𝑊)) = (𝑇 ((𝑈 𝑉) 𝑊))))
2720, 23, 263bitr4d 312 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴) ∧ ¬ 𝑃 ((𝑈 𝑉) 𝑊)) → (𝑃 ((𝑇 𝑈) (𝑉 𝑊)) ↔ ((𝑃 𝑈) (𝑉 𝑊)) = ((𝑇 𝑈) (𝑉 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  w3a 1078   = wceq 1520  wcel 2079   class class class wbr 4956  cfv 6217  (class class class)co 7007  Basecbs 16300  lecple 16389  joincjn 17371  Latclat 17472  Atomscatm 35880  HLchlt 35967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-proset 17355  df-poset 17373  df-lub 17401  df-glb 17402  df-join 17403  df-meet 17404  df-lat 17473  df-ats 35884  df-atl 35915  df-cvlat 35939  df-hlat 35968
This theorem is referenced by:  4atlem12b  36228
  Copyright terms: Public domain W3C validator