Proof of Theorem 4atlem12a
Step | Hyp | Ref
| Expression |
1 | | simp11 1201 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → 𝐾 ∈ HL) |
2 | | simp12 1202 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → 𝑃 ∈ 𝐴) |
3 | | simp13 1203 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → 𝑇 ∈ 𝐴) |
4 | 1 | hllatd 36933 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → 𝐾 ∈ Lat) |
5 | | simp21 1204 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → 𝑈 ∈ 𝐴) |
6 | | simp22 1205 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → 𝑉 ∈ 𝐴) |
7 | | eqid 2759 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
8 | | 4at.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
9 | | 4at.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
10 | 7, 8, 9 | hlatjcl 36936 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) → (𝑈 ∨ 𝑉) ∈ (Base‘𝐾)) |
11 | 1, 5, 6, 10 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → (𝑈 ∨ 𝑉) ∈ (Base‘𝐾)) |
12 | | simp23 1206 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → 𝑊 ∈ 𝐴) |
13 | 7, 9 | atbase 36858 |
. . . . 5
⊢ (𝑊 ∈ 𝐴 → 𝑊 ∈ (Base‘𝐾)) |
14 | 12, 13 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
15 | 7, 8 | latjcl 17720 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑈 ∨ 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑈 ∨ 𝑉) ∨ 𝑊) ∈ (Base‘𝐾)) |
16 | 4, 11, 14, 15 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → ((𝑈 ∨ 𝑉) ∨ 𝑊) ∈ (Base‘𝐾)) |
17 | | simp3 1136 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) |
18 | | 4at.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
19 | 7, 18, 8, 9 | hlexchb2 36954 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ ((𝑈 ∨ 𝑉) ∨ 𝑊) ∈ (Base‘𝐾)) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → (𝑃 ≤ (𝑇 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)) ↔ (𝑃 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)) = (𝑇 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)))) |
20 | 1, 2, 3, 16, 17, 19 | syl131anc 1381 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → (𝑃 ≤ (𝑇 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)) ↔ (𝑃 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)) = (𝑇 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)))) |
21 | 18, 8, 9 | 4atlem4a 37168 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) ∧ (𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) → ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) = (𝑇 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊))) |
22 | 1, 3, 5, 6, 12, 21 | syl32anc 1376 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) = (𝑇 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊))) |
23 | 22 | breq2d 5045 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → (𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ↔ 𝑃 ≤ (𝑇 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)))) |
24 | 18, 8, 9 | 4atlem4a 37168 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) ∧ (𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) → ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) = (𝑃 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊))) |
25 | 1, 2, 5, 6, 12, 24 | syl32anc 1376 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) = (𝑃 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊))) |
26 | 25, 22 | eqeq12d 2775 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → (((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) = ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ↔ (𝑃 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)) = (𝑇 ∨ ((𝑈 ∨ 𝑉) ∨ 𝑊)))) |
27 | 20, 23, 26 | 3bitr4d 315 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ ¬ 𝑃 ≤ ((𝑈 ∨ 𝑉) ∨ 𝑊)) → (𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ↔ ((𝑃 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) = ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |