Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatjass Structured version   Visualization version   GIF version

Theorem hlatjass 37645
Description: Lattice join is associative. Frequently-used special case of latjass 18298 for atoms. (Contributed by NM, 27-Jul-2012.)
Hypotheses
Ref Expression
hlatjcom.j = (join‘𝐾)
hlatjcom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlatjass ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))

Proof of Theorem hlatjass
StepHypRef Expression
1 hllat 37638 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
21adantr 481 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
3 simpr1 1193 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
4 eqid 2736 . . . 4 (Base‘𝐾) = (Base‘𝐾)
5 hlatjcom.a . . . 4 𝐴 = (Atoms‘𝐾)
64, 5atbase 37564 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
73, 6syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃 ∈ (Base‘𝐾))
8 simpr2 1194 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
94, 5atbase 37564 . . 3 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
108, 9syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄 ∈ (Base‘𝐾))
11 simpr3 1195 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
124, 5atbase 37564 . . 3 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1311, 12syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅 ∈ (Base‘𝐾))
14 hlatjcom.j . . 3 = (join‘𝐾)
154, 14latjass 18298 . 2 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
162, 7, 10, 13, 15syl13anc 1371 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = (𝑃 (𝑄 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  cfv 6479  (class class class)co 7337  Basecbs 17009  joincjn 18126  Latclat 18246  Atomscatm 37538  HLchlt 37625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-proset 18110  df-poset 18128  df-lub 18161  df-glb 18162  df-join 18163  df-meet 18164  df-lat 18247  df-ats 37542  df-atl 37573  df-cvlat 37597  df-hlat 37626
This theorem is referenced by:  hlatj12  37646  4noncolr3  37729  3dim3  37745  3atlem1  37759  3atlem2  37760  4atlem4a  37875  dalemply  37930  dalemsly  37931  dalawlem6  38152  dalawlem11  38157  dalawlem12  38158  4atexlemc  38345  cdleme20c  38587  cdleme35b  38726  dia2dimlem2  39341
  Copyright terms: Public domain W3C validator