| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nncni | Structured version Visualization version GIF version | ||
| Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| nnre.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| nncni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
| 2 | nncn 12140 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ℂcc 11011 ℕcn 12132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12133 |
| This theorem is referenced by: 9p1e10 12596 numnncl2 12617 dec10p 12637 3dec 14175 faclbnd4lem1 14202 4bc2eq6 14238 ef01bndlem 16095 3dvds 16244 divalglem8 16313 pockthi 16821 dec5nprm 16980 dec2nprm 16981 modxai 16982 modxp1i 16984 mod2xnegi 16985 modsubi 16986 23prm 17032 37prm 17034 43prm 17035 83prm 17036 139prm 17037 163prm 17038 1259lem1 17044 1259lem4 17047 2503lem2 17051 4001lem1 17054 4001lem3 17056 mcubic 26785 cubic2 26786 cubic 26787 quart1cl 26792 quart1lem 26793 quart1 26794 quartlem1 26795 quartlem2 26796 log2ublem1 26884 log2ublem2 26885 log2ub 26887 bclbnd 27219 bposlem8 27230 pntlemf 27544 ex-lcm 30440 dpmul10 32882 decdiv10 32883 dp3mul10 32885 dpadd2 32897 dpadd 32898 dpadd3 32899 dpmul 32900 dpmul4 32901 ballotlem2 34523 ballotlemfmpn 34529 ballotth 34572 cnndvlem1 36602 addassnni 42097 addcomnni 42098 mulassnni 42099 mulcomnni 42100 gcdaddmzz2nncomi 42108 lcmeprodgcdi 42120 lcmineqlem6 42147 lcmineqlem23 42164 3lexlogpow5ineq5 42173 1t10e1p1e11 47434 deccarry 47435 fmtnoprmfac2lem1 47690 139prmALT 47720 3exp4mod41 47740 41prothprmlem1 47741 2exp340mod341 47857 bgoldbtbndlem1 47929 tgblthelfgott 47939 tgoldbachlt 47940 |
| Copyright terms: Public domain | W3C validator |