![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nncni | Structured version Visualization version GIF version |
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
nnre.1 | ⊢ 𝐴 ∈ ℕ |
Ref | Expression |
---|---|
nncni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
2 | nncn 12224 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ℂcc 11110 ℕcn 12216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 ax-1cn 11170 ax-addcl 11172 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-nn 12217 |
This theorem is referenced by: 9p1e10 12683 numnncl2 12704 dec10p 12724 3dec 14230 faclbnd4lem1 14257 4bc2eq6 14293 ef01bndlem 16131 3dvds 16278 divalglem8 16347 pockthi 16844 dec5nprm 17003 dec2nprm 17004 modxai 17005 modxp1i 17007 mod2xnegi 17008 modsubi 17009 23prm 17056 37prm 17058 43prm 17059 83prm 17060 139prm 17061 163prm 17062 1259lem1 17068 1259lem4 17071 2503lem2 17075 4001lem1 17078 4001lem3 17080 mcubic 26576 cubic2 26577 cubic 26578 quart1cl 26583 quart1lem 26584 quart1 26585 quartlem1 26586 quartlem2 26587 log2ublem1 26675 log2ublem2 26676 log2ub 26678 bclbnd 27007 bposlem8 27018 pntlemf 27332 ex-lcm 29966 dpmul10 32316 decdiv10 32317 dp3mul10 32319 dpadd2 32331 dpadd 32332 dpadd3 32333 dpmul 32334 dpmul4 32335 ballotlem2 33773 ballotlemfmpn 33779 ballotth 33822 cnndvlem1 35716 addassnni 41156 addcomnni 41157 mulassnni 41158 mulcomnni 41159 gcdaddmzz2nncomi 41167 lcmeprodgcdi 41178 lcmineqlem6 41205 lcmineqlem23 41222 3lexlogpow5ineq5 41231 1t10e1p1e11 46317 deccarry 46318 fmtnoprmfac2lem1 46533 139prmALT 46563 3exp4mod41 46583 41prothprmlem1 46584 2exp340mod341 46700 bgoldbtbndlem1 46772 tgblthelfgott 46782 tgoldbachlt 46783 |
Copyright terms: Public domain | W3C validator |