| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nncni | Structured version Visualization version GIF version | ||
| Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| nnre.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| nncni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
| 2 | nncn 12201 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℂcc 11073 ℕcn 12193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 |
| This theorem is referenced by: 9p1e10 12658 numnncl2 12679 dec10p 12699 3dec 14238 faclbnd4lem1 14265 4bc2eq6 14301 ef01bndlem 16159 3dvds 16308 divalglem8 16377 pockthi 16885 dec5nprm 17044 dec2nprm 17045 modxai 17046 modxp1i 17048 mod2xnegi 17049 modsubi 17050 23prm 17096 37prm 17098 43prm 17099 83prm 17100 139prm 17101 163prm 17102 1259lem1 17108 1259lem4 17111 2503lem2 17115 4001lem1 17118 4001lem3 17120 mcubic 26764 cubic2 26765 cubic 26766 quart1cl 26771 quart1lem 26772 quart1 26773 quartlem1 26774 quartlem2 26775 log2ublem1 26863 log2ublem2 26864 log2ub 26866 bclbnd 27198 bposlem8 27209 pntlemf 27523 ex-lcm 30394 dpmul10 32822 decdiv10 32823 dp3mul10 32825 dpadd2 32837 dpadd 32838 dpadd3 32839 dpmul 32840 dpmul4 32841 ballotlem2 34487 ballotlemfmpn 34493 ballotth 34536 cnndvlem1 36532 addassnni 41979 addcomnni 41980 mulassnni 41981 mulcomnni 41982 gcdaddmzz2nncomi 41990 lcmeprodgcdi 42002 lcmineqlem6 42029 lcmineqlem23 42046 3lexlogpow5ineq5 42055 1t10e1p1e11 47315 deccarry 47316 fmtnoprmfac2lem1 47571 139prmALT 47601 3exp4mod41 47621 41prothprmlem1 47622 2exp340mod341 47738 bgoldbtbndlem1 47810 tgblthelfgott 47820 tgoldbachlt 47821 |
| Copyright terms: Public domain | W3C validator |