![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nncni | Structured version Visualization version GIF version |
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
nnre.1 | ⊢ 𝐴 ∈ ℕ |
Ref | Expression |
---|---|
nncni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
2 | nncn 12301 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ℂcc 11182 ℕcn 12293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 |
This theorem is referenced by: 9p1e10 12760 numnncl2 12781 dec10p 12801 3dec 14315 faclbnd4lem1 14342 4bc2eq6 14378 ef01bndlem 16232 3dvds 16379 divalglem8 16448 pockthi 16954 dec5nprm 17113 dec2nprm 17114 modxai 17115 modxp1i 17117 mod2xnegi 17118 modsubi 17119 23prm 17166 37prm 17168 43prm 17169 83prm 17170 139prm 17171 163prm 17172 1259lem1 17178 1259lem4 17181 2503lem2 17185 4001lem1 17188 4001lem3 17190 mcubic 26908 cubic2 26909 cubic 26910 quart1cl 26915 quart1lem 26916 quart1 26917 quartlem1 26918 quartlem2 26919 log2ublem1 27007 log2ublem2 27008 log2ub 27010 bclbnd 27342 bposlem8 27353 pntlemf 27667 ex-lcm 30490 dpmul10 32859 decdiv10 32860 dp3mul10 32862 dpadd2 32874 dpadd 32875 dpadd3 32876 dpmul 32877 dpmul4 32878 ballotlem2 34453 ballotlemfmpn 34459 ballotth 34502 cnndvlem1 36503 addassnni 41941 addcomnni 41942 mulassnni 41943 mulcomnni 41944 gcdaddmzz2nncomi 41952 lcmeprodgcdi 41964 lcmineqlem6 41991 lcmineqlem23 42008 3lexlogpow5ineq5 42017 1t10e1p1e11 47225 deccarry 47226 fmtnoprmfac2lem1 47440 139prmALT 47470 3exp4mod41 47490 41prothprmlem1 47491 2exp340mod341 47607 bgoldbtbndlem1 47679 tgblthelfgott 47689 tgoldbachlt 47690 |
Copyright terms: Public domain | W3C validator |