Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nncni | Structured version Visualization version GIF version |
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
nnre.1 | ⊢ 𝐴 ∈ ℕ |
Ref | Expression |
---|---|
nncni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
2 | nncn 11911 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ℂcc 10800 ℕcn 11903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 |
This theorem is referenced by: 9p1e10 12368 numnncl2 12389 dec10p 12409 3dec 13908 faclbnd4lem1 13935 4bc2eq6 13971 ef01bndlem 15821 3dvds 15968 divalglem8 16037 pockthi 16536 dec5nprm 16695 dec2nprm 16696 modxai 16697 modxp1i 16699 mod2xnegi 16700 modsubi 16701 23prm 16748 37prm 16750 43prm 16751 83prm 16752 139prm 16753 163prm 16754 1259lem1 16760 1259lem4 16763 2503lem2 16767 4001lem1 16770 4001lem3 16772 mcubic 25902 cubic2 25903 cubic 25904 quart1cl 25909 quart1lem 25910 quart1 25911 quartlem1 25912 quartlem2 25913 log2ublem1 26001 log2ublem2 26002 log2ub 26004 bclbnd 26333 bposlem8 26344 pntlemf 26658 ex-lcm 28723 dpmul10 31071 decdiv10 31072 dp3mul10 31074 dpadd2 31086 dpadd 31087 dpadd3 31088 dpmul 31089 dpmul4 31090 ballotlem2 32355 ballotlemfmpn 32361 ballotth 32404 cnndvlem1 34644 addassnni 39921 addcomnni 39922 mulassnni 39923 mulcomnni 39924 gcdaddmzz2nncomi 39932 lcmeprodgcdi 39943 lcmineqlem6 39970 lcmineqlem23 39987 3lexlogpow5ineq5 39996 1t10e1p1e11 44690 deccarry 44691 fmtnoprmfac2lem1 44906 139prmALT 44936 3exp4mod41 44956 41prothprmlem1 44957 2exp340mod341 45073 bgoldbtbndlem1 45145 tgblthelfgott 45155 tgoldbachlt 45156 |
Copyright terms: Public domain | W3C validator |