| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nncni | Structured version Visualization version GIF version | ||
| Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| nnre.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| nncni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
| 2 | nncn 12154 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℂcc 11026 ℕcn 12146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 |
| This theorem is referenced by: 9p1e10 12611 numnncl2 12632 dec10p 12652 3dec 14191 faclbnd4lem1 14218 4bc2eq6 14254 ef01bndlem 16111 3dvds 16260 divalglem8 16329 pockthi 16837 dec5nprm 16996 dec2nprm 16997 modxai 16998 modxp1i 17000 mod2xnegi 17001 modsubi 17002 23prm 17048 37prm 17050 43prm 17051 83prm 17052 139prm 17053 163prm 17054 1259lem1 17060 1259lem4 17063 2503lem2 17067 4001lem1 17070 4001lem3 17072 mcubic 26773 cubic2 26774 cubic 26775 quart1cl 26780 quart1lem 26781 quart1 26782 quartlem1 26783 quartlem2 26784 log2ublem1 26872 log2ublem2 26873 log2ub 26875 bclbnd 27207 bposlem8 27218 pntlemf 27532 ex-lcm 30420 dpmul10 32848 decdiv10 32849 dp3mul10 32851 dpadd2 32863 dpadd 32864 dpadd3 32865 dpmul 32866 dpmul4 32867 ballotlem2 34456 ballotlemfmpn 34462 ballotth 34505 cnndvlem1 36510 addassnni 41957 addcomnni 41958 mulassnni 41959 mulcomnni 41960 gcdaddmzz2nncomi 41968 lcmeprodgcdi 41980 lcmineqlem6 42007 lcmineqlem23 42024 3lexlogpow5ineq5 42033 1t10e1p1e11 47295 deccarry 47296 fmtnoprmfac2lem1 47551 139prmALT 47581 3exp4mod41 47601 41prothprmlem1 47602 2exp340mod341 47718 bgoldbtbndlem1 47790 tgblthelfgott 47800 tgoldbachlt 47801 |
| Copyright terms: Public domain | W3C validator |