| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nncni | Structured version Visualization version GIF version | ||
| Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| nnre.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| nncni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
| 2 | nncn 12246 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ℂcc 11125 ℕcn 12238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 ax-1cn 11185 ax-addcl 11187 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-nn 12239 |
| This theorem is referenced by: 9p1e10 12708 numnncl2 12729 dec10p 12749 3dec 14282 faclbnd4lem1 14309 4bc2eq6 14345 ef01bndlem 16200 3dvds 16348 divalglem8 16417 pockthi 16925 dec5nprm 17084 dec2nprm 17085 modxai 17086 modxp1i 17088 mod2xnegi 17089 modsubi 17090 23prm 17136 37prm 17138 43prm 17139 83prm 17140 139prm 17141 163prm 17142 1259lem1 17148 1259lem4 17151 2503lem2 17155 4001lem1 17158 4001lem3 17160 mcubic 26807 cubic2 26808 cubic 26809 quart1cl 26814 quart1lem 26815 quart1 26816 quartlem1 26817 quartlem2 26818 log2ublem1 26906 log2ublem2 26907 log2ub 26909 bclbnd 27241 bposlem8 27252 pntlemf 27566 ex-lcm 30385 dpmul10 32815 decdiv10 32816 dp3mul10 32818 dpadd2 32830 dpadd 32831 dpadd3 32832 dpmul 32833 dpmul4 32834 ballotlem2 34467 ballotlemfmpn 34473 ballotth 34516 cnndvlem1 36501 addassnni 41943 addcomnni 41944 mulassnni 41945 mulcomnni 41946 gcdaddmzz2nncomi 41954 lcmeprodgcdi 41966 lcmineqlem6 41993 lcmineqlem23 42010 3lexlogpow5ineq5 42019 1t10e1p1e11 47287 deccarry 47288 fmtnoprmfac2lem1 47528 139prmALT 47558 3exp4mod41 47578 41prothprmlem1 47579 2exp340mod341 47695 bgoldbtbndlem1 47767 tgblthelfgott 47777 tgoldbachlt 47778 |
| Copyright terms: Public domain | W3C validator |