Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nncni | Structured version Visualization version GIF version |
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
nnre.1 | ⊢ 𝐴 ∈ ℕ |
Ref | Expression |
---|---|
nncni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
2 | nncn 11981 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ℂcc 10869 ℕcn 11973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 |
This theorem is referenced by: 9p1e10 12439 numnncl2 12460 dec10p 12480 3dec 13980 faclbnd4lem1 14007 4bc2eq6 14043 ef01bndlem 15893 3dvds 16040 divalglem8 16109 pockthi 16608 dec5nprm 16767 dec2nprm 16768 modxai 16769 modxp1i 16771 mod2xnegi 16772 modsubi 16773 23prm 16820 37prm 16822 43prm 16823 83prm 16824 139prm 16825 163prm 16826 1259lem1 16832 1259lem4 16835 2503lem2 16839 4001lem1 16842 4001lem3 16844 mcubic 25997 cubic2 25998 cubic 25999 quart1cl 26004 quart1lem 26005 quart1 26006 quartlem1 26007 quartlem2 26008 log2ublem1 26096 log2ublem2 26097 log2ub 26099 bclbnd 26428 bposlem8 26439 pntlemf 26753 ex-lcm 28822 dpmul10 31169 decdiv10 31170 dp3mul10 31172 dpadd2 31184 dpadd 31185 dpadd3 31186 dpmul 31187 dpmul4 31188 ballotlem2 32455 ballotlemfmpn 32461 ballotth 32504 cnndvlem1 34717 addassnni 39993 addcomnni 39994 mulassnni 39995 mulcomnni 39996 gcdaddmzz2nncomi 40004 lcmeprodgcdi 40015 lcmineqlem6 40042 lcmineqlem23 40059 3lexlogpow5ineq5 40068 1t10e1p1e11 44802 deccarry 44803 fmtnoprmfac2lem1 45018 139prmALT 45048 3exp4mod41 45068 41prothprmlem1 45069 2exp340mod341 45185 bgoldbtbndlem1 45257 tgblthelfgott 45267 tgoldbachlt 45268 |
Copyright terms: Public domain | W3C validator |