| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nncni | Structured version Visualization version GIF version | ||
| Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| nnre.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| nncni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
| 2 | nncn 12256 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 ℂcc 11135 ℕcn 12248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 ax-1cn 11195 ax-addcl 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-nn 12249 |
| This theorem is referenced by: 9p1e10 12718 numnncl2 12739 dec10p 12759 3dec 14288 faclbnd4lem1 14315 4bc2eq6 14351 ef01bndlem 16203 3dvds 16351 divalglem8 16420 pockthi 16928 dec5nprm 17087 dec2nprm 17088 modxai 17089 modxp1i 17091 mod2xnegi 17092 modsubi 17093 23prm 17139 37prm 17141 43prm 17142 83prm 17143 139prm 17144 163prm 17145 1259lem1 17151 1259lem4 17154 2503lem2 17158 4001lem1 17161 4001lem3 17163 mcubic 26827 cubic2 26828 cubic 26829 quart1cl 26834 quart1lem 26835 quart1 26836 quartlem1 26837 quartlem2 26838 log2ublem1 26926 log2ublem2 26927 log2ub 26929 bclbnd 27261 bposlem8 27272 pntlemf 27586 ex-lcm 30406 dpmul10 32822 decdiv10 32823 dp3mul10 32825 dpadd2 32837 dpadd 32838 dpadd3 32839 dpmul 32840 dpmul4 32841 ballotlem2 34466 ballotlemfmpn 34472 ballotth 34515 cnndvlem1 36513 addassnni 41960 addcomnni 41961 mulassnni 41962 mulcomnni 41963 gcdaddmzz2nncomi 41971 lcmeprodgcdi 41983 lcmineqlem6 42010 lcmineqlem23 42027 3lexlogpow5ineq5 42036 1t10e1p1e11 47295 deccarry 47296 fmtnoprmfac2lem1 47526 139prmALT 47556 3exp4mod41 47576 41prothprmlem1 47577 2exp340mod341 47693 bgoldbtbndlem1 47765 tgblthelfgott 47775 tgoldbachlt 47776 |
| Copyright terms: Public domain | W3C validator |