| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nncni | Structured version Visualization version GIF version | ||
| Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| nnre.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| nncni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
| 2 | nncn 12130 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ℂcc 11001 ℕcn 12122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 |
| This theorem is referenced by: 9p1e10 12587 numnncl2 12608 dec10p 12628 3dec 14170 faclbnd4lem1 14197 4bc2eq6 14233 ef01bndlem 16090 3dvds 16239 divalglem8 16308 pockthi 16816 dec5nprm 16975 dec2nprm 16976 modxai 16977 modxp1i 16979 mod2xnegi 16980 modsubi 16981 23prm 17027 37prm 17029 43prm 17030 83prm 17031 139prm 17032 163prm 17033 1259lem1 17039 1259lem4 17042 2503lem2 17046 4001lem1 17049 4001lem3 17051 mcubic 26782 cubic2 26783 cubic 26784 quart1cl 26789 quart1lem 26790 quart1 26791 quartlem1 26792 quartlem2 26793 log2ublem1 26881 log2ublem2 26882 log2ub 26884 bclbnd 27216 bposlem8 27227 pntlemf 27541 ex-lcm 30433 dpmul10 32870 decdiv10 32871 dp3mul10 32873 dpadd2 32885 dpadd 32886 dpadd3 32887 dpmul 32888 dpmul4 32889 ballotlem2 34497 ballotlemfmpn 34503 ballotth 34546 cnndvlem1 36570 addassnni 42016 addcomnni 42017 mulassnni 42018 mulcomnni 42019 gcdaddmzz2nncomi 42027 lcmeprodgcdi 42039 lcmineqlem6 42066 lcmineqlem23 42083 3lexlogpow5ineq5 42092 1t10e1p1e11 47340 deccarry 47341 fmtnoprmfac2lem1 47596 139prmALT 47626 3exp4mod41 47646 41prothprmlem1 47647 2exp340mod341 47763 bgoldbtbndlem1 47835 tgblthelfgott 47845 tgoldbachlt 47846 |
| Copyright terms: Public domain | W3C validator |