![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nncni | Structured version Visualization version GIF version |
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
nnre.1 | ⊢ 𝐴 ∈ ℕ |
Ref | Expression |
---|---|
nncni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
2 | nncn 12271 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ℂcc 11150 ℕcn 12263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-1cn 11210 ax-addcl 11212 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-nn 12264 |
This theorem is referenced by: 9p1e10 12732 numnncl2 12753 dec10p 12773 3dec 14301 faclbnd4lem1 14328 4bc2eq6 14364 ef01bndlem 16216 3dvds 16364 divalglem8 16433 pockthi 16940 dec5nprm 17099 dec2nprm 17100 modxai 17101 modxp1i 17103 mod2xnegi 17104 modsubi 17105 23prm 17152 37prm 17154 43prm 17155 83prm 17156 139prm 17157 163prm 17158 1259lem1 17164 1259lem4 17167 2503lem2 17171 4001lem1 17174 4001lem3 17176 mcubic 26904 cubic2 26905 cubic 26906 quart1cl 26911 quart1lem 26912 quart1 26913 quartlem1 26914 quartlem2 26915 log2ublem1 27003 log2ublem2 27004 log2ub 27006 bclbnd 27338 bposlem8 27349 pntlemf 27663 ex-lcm 30486 dpmul10 32861 decdiv10 32862 dp3mul10 32864 dpadd2 32876 dpadd 32877 dpadd3 32878 dpmul 32879 dpmul4 32880 ballotlem2 34469 ballotlemfmpn 34475 ballotth 34518 cnndvlem1 36519 addassnni 41965 addcomnni 41966 mulassnni 41967 mulcomnni 41968 gcdaddmzz2nncomi 41976 lcmeprodgcdi 41988 lcmineqlem6 42015 lcmineqlem23 42032 3lexlogpow5ineq5 42041 1t10e1p1e11 47259 deccarry 47260 fmtnoprmfac2lem1 47490 139prmALT 47520 3exp4mod41 47540 41prothprmlem1 47541 2exp340mod341 47657 bgoldbtbndlem1 47729 tgblthelfgott 47739 tgoldbachlt 47740 |
Copyright terms: Public domain | W3C validator |