![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nncni | Structured version Visualization version GIF version |
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
nnre.1 | ⊢ 𝐴 ∈ ℕ |
Ref | Expression |
---|---|
nncni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
2 | nncn 12220 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ℂcc 11108 ℕcn 12212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-nn 12213 |
This theorem is referenced by: 9p1e10 12679 numnncl2 12700 dec10p 12720 3dec 14226 faclbnd4lem1 14253 4bc2eq6 14289 ef01bndlem 16127 3dvds 16274 divalglem8 16343 pockthi 16840 dec5nprm 16999 dec2nprm 17000 modxai 17001 modxp1i 17003 mod2xnegi 17004 modsubi 17005 23prm 17052 37prm 17054 43prm 17055 83prm 17056 139prm 17057 163prm 17058 1259lem1 17064 1259lem4 17067 2503lem2 17071 4001lem1 17074 4001lem3 17076 mcubic 26352 cubic2 26353 cubic 26354 quart1cl 26359 quart1lem 26360 quart1 26361 quartlem1 26362 quartlem2 26363 log2ublem1 26451 log2ublem2 26452 log2ub 26454 bclbnd 26783 bposlem8 26794 pntlemf 27108 ex-lcm 29711 dpmul10 32061 decdiv10 32062 dp3mul10 32064 dpadd2 32076 dpadd 32077 dpadd3 32078 dpmul 32079 dpmul4 32080 ballotlem2 33487 ballotlemfmpn 33493 ballotth 33536 cnndvlem1 35413 addassnni 40850 addcomnni 40851 mulassnni 40852 mulcomnni 40853 gcdaddmzz2nncomi 40861 lcmeprodgcdi 40872 lcmineqlem6 40899 lcmineqlem23 40916 3lexlogpow5ineq5 40925 1t10e1p1e11 46018 deccarry 46019 fmtnoprmfac2lem1 46234 139prmALT 46264 3exp4mod41 46284 41prothprmlem1 46285 2exp340mod341 46401 bgoldbtbndlem1 46473 tgblthelfgott 46483 tgoldbachlt 46484 |
Copyright terms: Public domain | W3C validator |