| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nncni | Structured version Visualization version GIF version | ||
| Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| nnre.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| nncni | ⊢ 𝐴 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
| 2 | nncn 12194 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℂcc 11066 ℕcn 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 |
| This theorem is referenced by: 9p1e10 12651 numnncl2 12672 dec10p 12692 3dec 14231 faclbnd4lem1 14258 4bc2eq6 14294 ef01bndlem 16152 3dvds 16301 divalglem8 16370 pockthi 16878 dec5nprm 17037 dec2nprm 17038 modxai 17039 modxp1i 17041 mod2xnegi 17042 modsubi 17043 23prm 17089 37prm 17091 43prm 17092 83prm 17093 139prm 17094 163prm 17095 1259lem1 17101 1259lem4 17104 2503lem2 17108 4001lem1 17111 4001lem3 17113 mcubic 26757 cubic2 26758 cubic 26759 quart1cl 26764 quart1lem 26765 quart1 26766 quartlem1 26767 quartlem2 26768 log2ublem1 26856 log2ublem2 26857 log2ub 26859 bclbnd 27191 bposlem8 27202 pntlemf 27516 ex-lcm 30387 dpmul10 32815 decdiv10 32816 dp3mul10 32818 dpadd2 32830 dpadd 32831 dpadd3 32832 dpmul 32833 dpmul4 32834 ballotlem2 34480 ballotlemfmpn 34486 ballotth 34529 cnndvlem1 36525 addassnni 41972 addcomnni 41973 mulassnni 41974 mulcomnni 41975 gcdaddmzz2nncomi 41983 lcmeprodgcdi 41995 lcmineqlem6 42022 lcmineqlem23 42039 3lexlogpow5ineq5 42048 1t10e1p1e11 47311 deccarry 47312 fmtnoprmfac2lem1 47567 139prmALT 47597 3exp4mod41 47617 41prothprmlem1 47618 2exp340mod341 47734 bgoldbtbndlem1 47806 tgblthelfgott 47816 tgoldbachlt 47817 |
| Copyright terms: Public domain | W3C validator |