![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atleneN | Structured version Visualization version GIF version |
Description: Inequality derived from atom condition. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atlene.l | ⊢ ≤ = (le‘𝐾) |
atlene.j | ⊢ ∨ = (join‘𝐾) |
atlene.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atleneN | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑄 ≠ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atlene.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | atlene.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | eqid 2771 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
4 | atlene.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | atcvrj1 35236 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃( ⋖ ‘𝐾)(𝑄 ∨ 𝑅)) |
6 | 2, 3, 4 | atcvrneN 35235 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃( ⋖ ‘𝐾)(𝑄 ∨ 𝑅)) → 𝑄 ≠ 𝑅) |
7 | 5, 6 | syld3an3 1515 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑄 ≠ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 class class class wbr 4786 ‘cfv 6029 (class class class)co 6792 lecple 16152 joincjn 17148 ⋖ ccvr 35067 Atomscatm 35068 HLchlt 35155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-riota 6753 df-ov 6795 df-oprab 6796 df-preset 17132 df-poset 17150 df-plt 17162 df-lub 17178 df-glb 17179 df-join 17180 df-meet 17181 df-p0 17243 df-lat 17250 df-clat 17312 df-oposet 34981 df-ol 34983 df-oml 34984 df-covers 35071 df-ats 35072 df-atl 35103 df-cvlat 35127 df-hlat 35156 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |