Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atleneN Structured version   Visualization version   GIF version

Theorem atleneN 35216
Description: Inequality derived from atom condition. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
atlene.l = (le‘𝐾)
atlene.j = (join‘𝐾)
atlene.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atleneN ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑄𝑅)

Proof of Theorem atleneN
StepHypRef Expression
1 atlene.l . . 3 = (le‘𝐾)
2 atlene.j . . 3 = (join‘𝐾)
3 eqid 2813 . . 3 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 atlene.a . . 3 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4atcvrj1 35213 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃( ⋖ ‘𝐾)(𝑄 𝑅))
62, 3, 4atcvrneN 35212 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃( ⋖ ‘𝐾)(𝑄 𝑅)) → 𝑄𝑅)
75, 6syld3an3 1521 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑄𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100   = wceq 1637  wcel 2157  wne 2985   class class class wbr 4851  cfv 6104  (class class class)co 6877  lecple 16163  joincjn 17152  ccvr 35044  Atomscatm 35045  HLchlt 35132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-op 4384  df-uni 4638  df-iun 4721  df-br 4852  df-opab 4914  df-mpt 4931  df-id 5226  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-riota 6838  df-ov 6880  df-oprab 6881  df-proset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-lat 17254  df-clat 17316  df-oposet 34958  df-ol 34960  df-oml 34961  df-covers 35048  df-ats 35049  df-atl 35080  df-cvlat 35104  df-hlat 35133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator