Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrneN Structured version   Visualization version   GIF version

Theorem atcvrneN 35505
 Description: Inequality derived from atom condition. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
atcvrne.j = (join‘𝐾)
atcvrne.c 𝐶 = ( ⋖ ‘𝐾)
atcvrne.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvrneN ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄𝑅)

Proof of Theorem atcvrneN
StepHypRef Expression
1 hlatl 35435 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
213ad2ant1 1169 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ AtLat)
3 simp21 1269 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃𝐴)
4 eqid 2825 . . . 4 (0.‘𝐾) = (0.‘𝐾)
5 atcvrne.a . . . 4 𝐴 = (Atoms‘𝐾)
64, 5atn0 35383 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝑃 ≠ (0.‘𝐾))
72, 3, 6syl2anc 581 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 ≠ (0.‘𝐾))
8 simp1 1172 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ HL)
9 eqid 2825 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
109, 5atbase 35364 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
113, 10syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 ∈ (Base‘𝐾))
12 simp22 1270 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄𝐴)
13 simp23 1271 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑅𝐴)
14 simp3 1174 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃𝐶(𝑄 𝑅))
15 atcvrne.j . . . . 5 = (join‘𝐾)
16 atcvrne.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
179, 15, 4, 16, 5atcvrj0 35503 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄𝐴𝑅𝐴) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑃 = (0.‘𝐾) ↔ 𝑄 = 𝑅))
188, 11, 12, 13, 14, 17syl131anc 1508 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑃 = (0.‘𝐾) ↔ 𝑄 = 𝑅))
1918necon3bid 3043 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑃 ≠ (0.‘𝐾) ↔ 𝑄𝑅))
207, 19mpbid 224 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄𝑅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ w3a 1113   = wceq 1658   ∈ wcel 2166   ≠ wne 2999   class class class wbr 4873  ‘cfv 6123  (class class class)co 6905  Basecbs 16222  joincjn 17297  0.cp0 17390   ⋖ ccvr 35337  Atomscatm 35338  AtLatcal 35339  HLchlt 35425 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-proset 17281  df-poset 17299  df-plt 17311  df-lub 17327  df-glb 17328  df-join 17329  df-meet 17330  df-p0 17392  df-lat 17399  df-clat 17461  df-oposet 35251  df-ol 35253  df-oml 35254  df-covers 35341  df-ats 35342  df-atl 35373  df-cvlat 35397  df-hlat 35426 This theorem is referenced by:  atleneN  35509
 Copyright terms: Public domain W3C validator