Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atcvrj2 | Structured version Visualization version GIF version |
Description: Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.) |
Ref | Expression |
---|---|
atcvrj1x.l | ⊢ ≤ = (le‘𝐾) |
atcvrj1x.j | ⊢ ∨ = (join‘𝐾) |
atcvrj1x.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
atcvrj1x.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atcvrj2 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃𝐶(𝑄 ∨ 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atcvrj1x.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | atcvrj1x.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | atcvrj1x.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | atcvrj1x.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | atcvrj2b 37008 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑄 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) ↔ 𝑃𝐶(𝑄 ∨ 𝑅))) |
6 | 5 | biimp3a 1466 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃𝐶(𝑄 ∨ 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 class class class wbr 5032 ‘cfv 6335 (class class class)co 7150 lecple 16630 joincjn 17620 ⋖ ccvr 36838 Atomscatm 36839 HLchlt 36926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-proset 17604 df-poset 17622 df-plt 17634 df-lub 17650 df-glb 17651 df-join 17652 df-meet 17653 df-p0 17715 df-lat 17722 df-clat 17784 df-oposet 36752 df-ol 36754 df-oml 36755 df-covers 36842 df-ats 36843 df-atl 36874 df-cvlat 36898 df-hlat 36927 |
This theorem is referenced by: atltcvr 37011 atexchcvrN 37016 atcvrlln2 37095 lncvrat 37358 |
Copyright terms: Public domain | W3C validator |