Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sinord | Structured version Visualization version GIF version |
Description: Sine is increasing over the closed interval from -(π / 2) to (π / 2). (Contributed by Mario Carneiro, 29-Jul-2014.) |
Ref | Expression |
---|---|
sinord | ⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → (𝐴 < 𝐵 ↔ (sin‘𝐴) < (sin‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neghalfpire 25210 | . . . . 5 ⊢ -(π / 2) ∈ ℝ | |
2 | halfpire 25209 | . . . . 5 ⊢ (π / 2) ∈ ℝ | |
3 | iccssre 12904 | . . . . 5 ⊢ ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ) → (-(π / 2)[,](π / 2)) ⊆ ℝ) | |
4 | 1, 2, 3 | mp2an 692 | . . . 4 ⊢ (-(π / 2)[,](π / 2)) ⊆ ℝ |
5 | 4 | sseli 3874 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → 𝐴 ∈ ℝ) |
6 | 4 | sseli 3874 | . . 3 ⊢ (𝐵 ∈ (-(π / 2)[,](π / 2)) → 𝐵 ∈ ℝ) |
7 | ltsub2 11216 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 < 𝐵 ↔ ((π / 2) − 𝐵) < ((π / 2) − 𝐴))) | |
8 | 2, 7 | mp3an3 1451 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((π / 2) − 𝐵) < ((π / 2) − 𝐴))) |
9 | 5, 6, 8 | syl2an 599 | . 2 ⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → (𝐴 < 𝐵 ↔ ((π / 2) − 𝐵) < ((π / 2) − 𝐴))) |
10 | oveq2 7179 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((π / 2) − 𝑥) = ((π / 2) − 𝐵)) | |
11 | 10 | eleq1d 2817 | . . . 4 ⊢ (𝑥 = 𝐵 → (((π / 2) − 𝑥) ∈ (0[,]π) ↔ ((π / 2) − 𝐵) ∈ (0[,]π))) |
12 | 4 | sseli 3874 | . . . . . 6 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ∈ ℝ) |
13 | resubcl 11029 | . . . . . 6 ⊢ (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((π / 2) − 𝑥) ∈ ℝ) | |
14 | 2, 12, 13 | sylancr 590 | . . . . 5 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ∈ ℝ) |
15 | 1, 2 | elicc2i 12888 | . . . . . . 7 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↔ (𝑥 ∈ ℝ ∧ -(π / 2) ≤ 𝑥 ∧ 𝑥 ≤ (π / 2))) |
16 | 15 | simp3bi 1148 | . . . . . 6 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ≤ (π / 2)) |
17 | subge0 11232 | . . . . . . 7 ⊢ (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ ((π / 2) − 𝑥) ↔ 𝑥 ≤ (π / 2))) | |
18 | 2, 12, 17 | sylancr 590 | . . . . . 6 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → (0 ≤ ((π / 2) − 𝑥) ↔ 𝑥 ≤ (π / 2))) |
19 | 16, 18 | mpbird 260 | . . . . 5 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → 0 ≤ ((π / 2) − 𝑥)) |
20 | 15 | simp2bi 1147 | . . . . . . 7 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → -(π / 2) ≤ 𝑥) |
21 | lesub2 11214 | . . . . . . . . 9 ⊢ ((-(π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (-(π / 2) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ ((π / 2) − -(π / 2)))) | |
22 | 1, 2, 21 | mp3an13 1453 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (-(π / 2) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ ((π / 2) − -(π / 2)))) |
23 | 12, 22 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → (-(π / 2) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ ((π / 2) − -(π / 2)))) |
24 | 20, 23 | mpbid 235 | . . . . . 6 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ≤ ((π / 2) − -(π / 2))) |
25 | 2 | recni 10734 | . . . . . . . 8 ⊢ (π / 2) ∈ ℂ |
26 | 25, 25 | subnegi 11044 | . . . . . . 7 ⊢ ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2)) |
27 | pidiv2halves 25212 | . . . . . . 7 ⊢ ((π / 2) + (π / 2)) = π | |
28 | 26, 27 | eqtri 2761 | . . . . . 6 ⊢ ((π / 2) − -(π / 2)) = π |
29 | 24, 28 | breqtrdi 5072 | . . . . 5 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ≤ π) |
30 | 0re 10722 | . . . . . 6 ⊢ 0 ∈ ℝ | |
31 | pire 25203 | . . . . . 6 ⊢ π ∈ ℝ | |
32 | 30, 31 | elicc2i 12888 | . . . . 5 ⊢ (((π / 2) − 𝑥) ∈ (0[,]π) ↔ (((π / 2) − 𝑥) ∈ ℝ ∧ 0 ≤ ((π / 2) − 𝑥) ∧ ((π / 2) − 𝑥) ≤ π)) |
33 | 14, 19, 29, 32 | syl3anbrc 1344 | . . . 4 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ∈ (0[,]π)) |
34 | 11, 33 | vtoclga 3479 | . . 3 ⊢ (𝐵 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝐵) ∈ (0[,]π)) |
35 | oveq2 7179 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((π / 2) − 𝑥) = ((π / 2) − 𝐴)) | |
36 | 35 | eleq1d 2817 | . . . 4 ⊢ (𝑥 = 𝐴 → (((π / 2) − 𝑥) ∈ (0[,]π) ↔ ((π / 2) − 𝐴) ∈ (0[,]π))) |
37 | 36, 33 | vtoclga 3479 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝐴) ∈ (0[,]π)) |
38 | cosord 25275 | . . 3 ⊢ ((((π / 2) − 𝐵) ∈ (0[,]π) ∧ ((π / 2) − 𝐴) ∈ (0[,]π)) → (((π / 2) − 𝐵) < ((π / 2) − 𝐴) ↔ (cos‘((π / 2) − 𝐴)) < (cos‘((π / 2) − 𝐵)))) | |
39 | 34, 37, 38 | syl2anr 600 | . 2 ⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → (((π / 2) − 𝐵) < ((π / 2) − 𝐴) ↔ (cos‘((π / 2) − 𝐴)) < (cos‘((π / 2) − 𝐵)))) |
40 | 5 | recnd 10748 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → 𝐴 ∈ ℂ) |
41 | coshalfpim 25240 | . . . 4 ⊢ (𝐴 ∈ ℂ → (cos‘((π / 2) − 𝐴)) = (sin‘𝐴)) | |
42 | 40, 41 | syl 17 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (cos‘((π / 2) − 𝐴)) = (sin‘𝐴)) |
43 | 6 | recnd 10748 | . . . 4 ⊢ (𝐵 ∈ (-(π / 2)[,](π / 2)) → 𝐵 ∈ ℂ) |
44 | coshalfpim 25240 | . . . 4 ⊢ (𝐵 ∈ ℂ → (cos‘((π / 2) − 𝐵)) = (sin‘𝐵)) | |
45 | 43, 44 | syl 17 | . . 3 ⊢ (𝐵 ∈ (-(π / 2)[,](π / 2)) → (cos‘((π / 2) − 𝐵)) = (sin‘𝐵)) |
46 | 42, 45 | breqan12d 5047 | . 2 ⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → ((cos‘((π / 2) − 𝐴)) < (cos‘((π / 2) − 𝐵)) ↔ (sin‘𝐴) < (sin‘𝐵))) |
47 | 9, 39, 46 | 3bitrd 308 | 1 ⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → (𝐴 < 𝐵 ↔ (sin‘𝐴) < (sin‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ⊆ wss 3844 class class class wbr 5031 ‘cfv 6340 (class class class)co 7171 ℂcc 10614 ℝcr 10615 0cc0 10616 + caddc 10619 < clt 10754 ≤ cle 10755 − cmin 10949 -cneg 10950 / cdiv 11376 2c2 11772 [,]cicc 12825 sincsin 15510 cosccos 15511 πcpi 15513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7480 ax-inf2 9178 ax-cnex 10672 ax-resscn 10673 ax-1cn 10674 ax-icn 10675 ax-addcl 10676 ax-addrcl 10677 ax-mulcl 10678 ax-mulrcl 10679 ax-mulcom 10680 ax-addass 10681 ax-mulass 10682 ax-distr 10683 ax-i2m1 10684 ax-1ne0 10685 ax-1rid 10686 ax-rnegex 10687 ax-rrecex 10688 ax-cnre 10689 ax-pre-lttri 10690 ax-pre-lttrn 10691 ax-pre-ltadd 10692 ax-pre-mulgt0 10693 ax-pre-sup 10694 ax-addf 10695 ax-mulf 10696 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-int 4838 df-iun 4884 df-iin 4885 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-se 5485 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7128 df-ov 7174 df-oprab 7175 df-mpo 7176 df-of 7426 df-om 7601 df-1st 7715 df-2nd 7716 df-supp 7858 df-wrecs 7977 df-recs 8038 df-rdg 8076 df-1o 8132 df-2o 8133 df-er 8321 df-map 8440 df-pm 8441 df-ixp 8509 df-en 8557 df-dom 8558 df-sdom 8559 df-fin 8560 df-fsupp 8908 df-fi 8949 df-sup 8980 df-inf 8981 df-oi 9048 df-card 9442 df-pnf 10756 df-mnf 10757 df-xr 10758 df-ltxr 10759 df-le 10760 df-sub 10951 df-neg 10952 df-div 11377 df-nn 11718 df-2 11780 df-3 11781 df-4 11782 df-5 11783 df-6 11784 df-7 11785 df-8 11786 df-9 11787 df-n0 11978 df-z 12064 df-dec 12181 df-uz 12326 df-q 12432 df-rp 12474 df-xneg 12591 df-xadd 12592 df-xmul 12593 df-ioo 12826 df-ioc 12827 df-ico 12828 df-icc 12829 df-fz 12983 df-fzo 13126 df-fl 13254 df-seq 13462 df-exp 13523 df-fac 13727 df-bc 13756 df-hash 13784 df-shft 14517 df-cj 14549 df-re 14550 df-im 14551 df-sqrt 14685 df-abs 14686 df-limsup 14919 df-clim 14936 df-rlim 14937 df-sum 15137 df-ef 15514 df-sin 15516 df-cos 15517 df-pi 15519 df-struct 16589 df-ndx 16590 df-slot 16591 df-base 16593 df-sets 16594 df-ress 16595 df-plusg 16682 df-mulr 16683 df-starv 16684 df-sca 16685 df-vsca 16686 df-ip 16687 df-tset 16688 df-ple 16689 df-ds 16691 df-unif 16692 df-hom 16693 df-cco 16694 df-rest 16800 df-topn 16801 df-0g 16819 df-gsum 16820 df-topgen 16821 df-pt 16822 df-prds 16825 df-xrs 16879 df-qtop 16884 df-imas 16885 df-xps 16887 df-mre 16961 df-mrc 16962 df-acs 16964 df-mgm 17969 df-sgrp 18018 df-mnd 18029 df-submnd 18074 df-mulg 18344 df-cntz 18566 df-cmn 19027 df-psmet 20210 df-xmet 20211 df-met 20212 df-bl 20213 df-mopn 20214 df-fbas 20215 df-fg 20216 df-cnfld 20219 df-top 21646 df-topon 21663 df-topsp 21685 df-bases 21698 df-cld 21771 df-ntr 21772 df-cls 21773 df-nei 21850 df-lp 21888 df-perf 21889 df-cn 21979 df-cnp 21980 df-haus 22067 df-tx 22314 df-hmeo 22507 df-fil 22598 df-fm 22690 df-flim 22691 df-flf 22692 df-xms 23074 df-ms 23075 df-tms 23076 df-cncf 23631 df-limc 24618 df-dv 24619 |
This theorem is referenced by: tanord1 25281 |
Copyright terms: Public domain | W3C validator |