![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sinord | Structured version Visualization version GIF version |
Description: Sine is increasing over the closed interval from -(π / 2) to (π / 2). (Contributed by Mario Carneiro, 29-Jul-2014.) |
Ref | Expression |
---|---|
sinord | ⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → (𝐴 < 𝐵 ↔ (sin‘𝐴) < (sin‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neghalfpire 26314 | . . . . 5 ⊢ -(π / 2) ∈ ℝ | |
2 | halfpire 26313 | . . . . 5 ⊢ (π / 2) ∈ ℝ | |
3 | iccssre 13413 | . . . . 5 ⊢ ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ) → (-(π / 2)[,](π / 2)) ⊆ ℝ) | |
4 | 1, 2, 3 | mp2an 689 | . . . 4 ⊢ (-(π / 2)[,](π / 2)) ⊆ ℝ |
5 | 4 | sseli 3978 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → 𝐴 ∈ ℝ) |
6 | 4 | sseli 3978 | . . 3 ⊢ (𝐵 ∈ (-(π / 2)[,](π / 2)) → 𝐵 ∈ ℝ) |
7 | ltsub2 11718 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 < 𝐵 ↔ ((π / 2) − 𝐵) < ((π / 2) − 𝐴))) | |
8 | 2, 7 | mp3an3 1449 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((π / 2) − 𝐵) < ((π / 2) − 𝐴))) |
9 | 5, 6, 8 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → (𝐴 < 𝐵 ↔ ((π / 2) − 𝐵) < ((π / 2) − 𝐴))) |
10 | oveq2 7420 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((π / 2) − 𝑥) = ((π / 2) − 𝐵)) | |
11 | 10 | eleq1d 2817 | . . . 4 ⊢ (𝑥 = 𝐵 → (((π / 2) − 𝑥) ∈ (0[,]π) ↔ ((π / 2) − 𝐵) ∈ (0[,]π))) |
12 | 4 | sseli 3978 | . . . . . 6 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ∈ ℝ) |
13 | resubcl 11531 | . . . . . 6 ⊢ (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((π / 2) − 𝑥) ∈ ℝ) | |
14 | 2, 12, 13 | sylancr 586 | . . . . 5 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ∈ ℝ) |
15 | 1, 2 | elicc2i 13397 | . . . . . . 7 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) ↔ (𝑥 ∈ ℝ ∧ -(π / 2) ≤ 𝑥 ∧ 𝑥 ≤ (π / 2))) |
16 | 15 | simp3bi 1146 | . . . . . 6 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → 𝑥 ≤ (π / 2)) |
17 | subge0 11734 | . . . . . . 7 ⊢ (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ ((π / 2) − 𝑥) ↔ 𝑥 ≤ (π / 2))) | |
18 | 2, 12, 17 | sylancr 586 | . . . . . 6 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → (0 ≤ ((π / 2) − 𝑥) ↔ 𝑥 ≤ (π / 2))) |
19 | 16, 18 | mpbird 257 | . . . . 5 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → 0 ≤ ((π / 2) − 𝑥)) |
20 | 15 | simp2bi 1145 | . . . . . . 7 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → -(π / 2) ≤ 𝑥) |
21 | lesub2 11716 | . . . . . . . . 9 ⊢ ((-(π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (-(π / 2) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ ((π / 2) − -(π / 2)))) | |
22 | 1, 2, 21 | mp3an13 1451 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (-(π / 2) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ ((π / 2) − -(π / 2)))) |
23 | 12, 22 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → (-(π / 2) ≤ 𝑥 ↔ ((π / 2) − 𝑥) ≤ ((π / 2) − -(π / 2)))) |
24 | 20, 23 | mpbid 231 | . . . . . 6 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ≤ ((π / 2) − -(π / 2))) |
25 | 2 | recni 11235 | . . . . . . . 8 ⊢ (π / 2) ∈ ℂ |
26 | 25, 25 | subnegi 11546 | . . . . . . 7 ⊢ ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2)) |
27 | pidiv2halves 26316 | . . . . . . 7 ⊢ ((π / 2) + (π / 2)) = π | |
28 | 26, 27 | eqtri 2759 | . . . . . 6 ⊢ ((π / 2) − -(π / 2)) = π |
29 | 24, 28 | breqtrdi 5189 | . . . . 5 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ≤ π) |
30 | 0re 11223 | . . . . . 6 ⊢ 0 ∈ ℝ | |
31 | pire 26307 | . . . . . 6 ⊢ π ∈ ℝ | |
32 | 30, 31 | elicc2i 13397 | . . . . 5 ⊢ (((π / 2) − 𝑥) ∈ (0[,]π) ↔ (((π / 2) − 𝑥) ∈ ℝ ∧ 0 ≤ ((π / 2) − 𝑥) ∧ ((π / 2) − 𝑥) ≤ π)) |
33 | 14, 19, 29, 32 | syl3anbrc 1342 | . . . 4 ⊢ (𝑥 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝑥) ∈ (0[,]π)) |
34 | 11, 33 | vtoclga 3566 | . . 3 ⊢ (𝐵 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝐵) ∈ (0[,]π)) |
35 | oveq2 7420 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((π / 2) − 𝑥) = ((π / 2) − 𝐴)) | |
36 | 35 | eleq1d 2817 | . . . 4 ⊢ (𝑥 = 𝐴 → (((π / 2) − 𝑥) ∈ (0[,]π) ↔ ((π / 2) − 𝐴) ∈ (0[,]π))) |
37 | 36, 33 | vtoclga 3566 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → ((π / 2) − 𝐴) ∈ (0[,]π)) |
38 | cosord 26379 | . . 3 ⊢ ((((π / 2) − 𝐵) ∈ (0[,]π) ∧ ((π / 2) − 𝐴) ∈ (0[,]π)) → (((π / 2) − 𝐵) < ((π / 2) − 𝐴) ↔ (cos‘((π / 2) − 𝐴)) < (cos‘((π / 2) − 𝐵)))) | |
39 | 34, 37, 38 | syl2anr 596 | . 2 ⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → (((π / 2) − 𝐵) < ((π / 2) − 𝐴) ↔ (cos‘((π / 2) − 𝐴)) < (cos‘((π / 2) − 𝐵)))) |
40 | 5 | recnd 11249 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → 𝐴 ∈ ℂ) |
41 | coshalfpim 26344 | . . . 4 ⊢ (𝐴 ∈ ℂ → (cos‘((π / 2) − 𝐴)) = (sin‘𝐴)) | |
42 | 40, 41 | syl 17 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (cos‘((π / 2) − 𝐴)) = (sin‘𝐴)) |
43 | 6 | recnd 11249 | . . . 4 ⊢ (𝐵 ∈ (-(π / 2)[,](π / 2)) → 𝐵 ∈ ℂ) |
44 | coshalfpim 26344 | . . . 4 ⊢ (𝐵 ∈ ℂ → (cos‘((π / 2) − 𝐵)) = (sin‘𝐵)) | |
45 | 43, 44 | syl 17 | . . 3 ⊢ (𝐵 ∈ (-(π / 2)[,](π / 2)) → (cos‘((π / 2) − 𝐵)) = (sin‘𝐵)) |
46 | 42, 45 | breqan12d 5164 | . 2 ⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → ((cos‘((π / 2) − 𝐴)) < (cos‘((π / 2) − 𝐵)) ↔ (sin‘𝐴) < (sin‘𝐵))) |
47 | 9, 39, 46 | 3bitrd 305 | 1 ⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → (𝐴 < 𝐵 ↔ (sin‘𝐴) < (sin‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ⊆ wss 3948 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 ℂcc 11114 ℝcr 11115 0cc0 11116 + caddc 11119 < clt 11255 ≤ cle 11256 − cmin 11451 -cneg 11452 / cdiv 11878 2c2 12274 [,]cicc 13334 sincsin 16014 cosccos 16015 πcpi 16017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-map 8828 df-pm 8829 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-fi 9412 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-ioo 13335 df-ioc 13336 df-ico 13337 df-icc 13338 df-fz 13492 df-fzo 13635 df-fl 13764 df-seq 13974 df-exp 14035 df-fac 14241 df-bc 14270 df-hash 14298 df-shft 15021 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-limsup 15422 df-clim 15439 df-rlim 15440 df-sum 15640 df-ef 16018 df-sin 16020 df-cos 16021 df-pi 16023 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-mulg 18994 df-cntz 19229 df-cmn 19698 df-psmet 21224 df-xmet 21225 df-met 21226 df-bl 21227 df-mopn 21228 df-fbas 21229 df-fg 21230 df-cnfld 21233 df-top 22715 df-topon 22732 df-topsp 22754 df-bases 22768 df-cld 22842 df-ntr 22843 df-cls 22844 df-nei 22921 df-lp 22959 df-perf 22960 df-cn 23050 df-cnp 23051 df-haus 23138 df-tx 23385 df-hmeo 23578 df-fil 23669 df-fm 23761 df-flim 23762 df-flf 23763 df-xms 24145 df-ms 24146 df-tms 24147 df-cncf 24717 df-limc 25714 df-dv 25715 |
This theorem is referenced by: tanord1 26385 |
Copyright terms: Public domain | W3C validator |