Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > enqbreq2 | Structured version Visualization version GIF version |
Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
enqbreq2 | ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 7843 | . . 3 ⊢ (𝐴 ∈ (N × N) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
2 | 1st2nd2 7843 | . . 3 ⊢ (𝐵 ∈ (N × N) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | |
3 | 1, 2 | breqan12d 5086 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ~Q 〈(1st ‘𝐵), (2nd ‘𝐵)〉)) |
4 | xp1st 7836 | . . . 4 ⊢ (𝐴 ∈ (N × N) → (1st ‘𝐴) ∈ N) | |
5 | xp2nd 7837 | . . . 4 ⊢ (𝐴 ∈ (N × N) → (2nd ‘𝐴) ∈ N) | |
6 | 4, 5 | jca 511 | . . 3 ⊢ (𝐴 ∈ (N × N) → ((1st ‘𝐴) ∈ N ∧ (2nd ‘𝐴) ∈ N)) |
7 | xp1st 7836 | . . . 4 ⊢ (𝐵 ∈ (N × N) → (1st ‘𝐵) ∈ N) | |
8 | xp2nd 7837 | . . . 4 ⊢ (𝐵 ∈ (N × N) → (2nd ‘𝐵) ∈ N) | |
9 | 7, 8 | jca 511 | . . 3 ⊢ (𝐵 ∈ (N × N) → ((1st ‘𝐵) ∈ N ∧ (2nd ‘𝐵) ∈ N)) |
10 | enqbreq 10606 | . . 3 ⊢ ((((1st ‘𝐴) ∈ N ∧ (2nd ‘𝐴) ∈ N) ∧ ((1st ‘𝐵) ∈ N ∧ (2nd ‘𝐵) ∈ N)) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ~Q 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐴) ·N (1st ‘𝐵)))) | |
11 | 6, 9, 10 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ~Q 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐴) ·N (1st ‘𝐵)))) |
12 | mulcompi 10583 | . . . 4 ⊢ ((2nd ‘𝐴) ·N (1st ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴)) | |
13 | 12 | eqeq2i 2751 | . . 3 ⊢ (((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐴) ·N (1st ‘𝐵)) ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴))) |
14 | 13 | a1i 11 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐴) ·N (1st ‘𝐵)) ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
15 | 3, 11, 14 | 3bitrd 304 | 1 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 × cxp 5578 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 Ncnpi 10531 ·N cmi 10533 ~Q ceq 10538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-oadd 8271 df-omul 8272 df-ni 10559 df-mi 10561 df-enq 10598 |
This theorem is referenced by: adderpqlem 10641 mulerpqlem 10642 ltsonq 10656 lterpq 10657 |
Copyright terms: Public domain | W3C validator |