 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  enqbreq2 Structured version   Visualization version   GIF version

Theorem enqbreq2 10034
 Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
enqbreq2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))

Proof of Theorem enqbreq2
StepHypRef Expression
1 1st2nd2 7444 . . 3 (𝐴 ∈ (N × N) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 1st2nd2 7444 . . 3 (𝐵 ∈ (N × N) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
31, 2breqan12d 4863 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩))
4 xp1st 7437 . . . 4 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
5 xp2nd 7438 . . . 4 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
64, 5jca 508 . . 3 (𝐴 ∈ (N × N) → ((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N))
7 xp1st 7437 . . . 4 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
8 xp2nd 7438 . . . 4 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
97, 8jca 508 . . 3 (𝐵 ∈ (N × N) → ((1st𝐵) ∈ N ∧ (2nd𝐵) ∈ N))
10 enqbreq 10033 . . 3 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ ((1st𝐵) ∈ N ∧ (2nd𝐵) ∈ N)) → (⟨(1st𝐴), (2nd𝐴)⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵))))
116, 9, 10syl2an 590 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (⟨(1st𝐴), (2nd𝐴)⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵))))
12 mulcompi 10010 . . . 4 ((2nd𝐴) ·N (1st𝐵)) = ((1st𝐵) ·N (2nd𝐴))
1312eqeq2i 2815 . . 3 (((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵)) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴)))
1413a1i 11 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵)) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
153, 11, 143bitrd 297 1 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 385   = wceq 1653   ∈ wcel 2157  ⟨cop 4378   class class class wbr 4847   × cxp 5314  ‘cfv 6105  (class class class)co 6882  1st c1st 7403  2nd c2nd 7404  Ncnpi 9958   ·N cmi 9960   ~Q ceq 9965 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2379  ax-ext 2781  ax-sep 4979  ax-nul 4987  ax-pow 5039  ax-pr 5101  ax-un 7187 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2593  df-eu 2611  df-clab 2790  df-cleq 2796  df-clel 2799  df-nfc 2934  df-ne 2976  df-ral 3098  df-rex 3099  df-reu 3100  df-rab 3102  df-v 3391  df-sbc 3638  df-csb 3733  df-dif 3776  df-un 3778  df-in 3780  df-ss 3787  df-pss 3789  df-nul 4120  df-if 4282  df-pw 4355  df-sn 4373  df-pr 4375  df-tp 4377  df-op 4379  df-uni 4633  df-iun 4716  df-br 4848  df-opab 4910  df-mpt 4927  df-tr 4950  df-id 5224  df-eprel 5229  df-po 5237  df-so 5238  df-fr 5275  df-we 5277  df-xp 5322  df-rel 5323  df-cnv 5324  df-co 5325  df-dm 5326  df-rn 5327  df-res 5328  df-ima 5329  df-pred 5902  df-ord 5948  df-on 5949  df-lim 5950  df-suc 5951  df-iota 6068  df-fun 6107  df-fn 6108  df-f 6109  df-f1 6110  df-fo 6111  df-f1o 6112  df-fv 6113  df-ov 6885  df-oprab 6886  df-mpt2 6887  df-om 7304  df-1st 7405  df-2nd 7406  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-oadd 7807  df-omul 7808  df-ni 9986  df-mi 9988  df-enq 10025 This theorem is referenced by:  adderpqlem  10068  mulerpqlem  10069  ltsonq  10083  lterpq  10084
 Copyright terms: Public domain W3C validator