MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enqbreq2 Structured version   Visualization version   GIF version

Theorem enqbreq2 10939
Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
enqbreq2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))

Proof of Theorem enqbreq2
StepHypRef Expression
1 1st2nd2 8032 . . 3 (𝐴 ∈ (N × N) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 1st2nd2 8032 . . 3 (𝐵 ∈ (N × N) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
31, 2breqan12d 5140 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩))
4 xp1st 8025 . . . 4 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
5 xp2nd 8026 . . . 4 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
64, 5jca 511 . . 3 (𝐴 ∈ (N × N) → ((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N))
7 xp1st 8025 . . . 4 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
8 xp2nd 8026 . . . 4 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
97, 8jca 511 . . 3 (𝐵 ∈ (N × N) → ((1st𝐵) ∈ N ∧ (2nd𝐵) ∈ N))
10 enqbreq 10938 . . 3 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ ((1st𝐵) ∈ N ∧ (2nd𝐵) ∈ N)) → (⟨(1st𝐴), (2nd𝐴)⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵))))
116, 9, 10syl2an 596 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (⟨(1st𝐴), (2nd𝐴)⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵))))
12 mulcompi 10915 . . . 4 ((2nd𝐴) ·N (1st𝐵)) = ((1st𝐵) ·N (2nd𝐴))
1312eqeq2i 2749 . . 3 (((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵)) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴)))
1413a1i 11 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵)) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
153, 11, 143bitrd 305 1 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cop 4612   class class class wbr 5124   × cxp 5657  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  Ncnpi 10863   ·N cmi 10865   ~Q ceq 10870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-oadd 8489  df-omul 8490  df-ni 10891  df-mi 10893  df-enq 10930
This theorem is referenced by:  adderpqlem  10973  mulerpqlem  10974  ltsonq  10988  lterpq  10989
  Copyright terms: Public domain W3C validator