MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  le2sq Structured version   Visualization version   GIF version

Theorem le2sq 13232
Description: The square function on nonnegative reals is monotonic. (Contributed by NM, 18-Oct-1999.)
Assertion
Ref Expression
le2sq (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2)))

Proof of Theorem le2sq
StepHypRef Expression
1 le2msq 11253 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵)))
2 recn 10342 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 recn 10342 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 sqval 13216 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
5 sqval 13216 . . . . 5 (𝐵 ∈ ℂ → (𝐵↑2) = (𝐵 · 𝐵))
64, 5breqan12d 4889 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) ≤ (𝐵↑2) ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵)))
72, 3, 6syl2an 591 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) ≤ (𝐵↑2) ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵)))
87ad2ant2r 755 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) ≤ (𝐵↑2) ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵)))
91, 8bitr4d 274 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2166   class class class wbr 4873  (class class class)co 6905  cc 10250  cr 10251  0cc0 10252   · cmul 10257  cle 10392  2c2 11406  cexp 13154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-seq 13096  df-exp 13155
This theorem is referenced by:  le2sq2  13233  le2sqd  13340  sqrlem1  14360  sqrtle  14378  lenegsq  14437  prmreclem3  15993  gzrngunitlem  20171  bposlem7  25428  bposlem9  25430  dchrisum0fno1  25613  pntlemh  25701  pntlemr  25704  nmopcoadji  29515  hstle1  29640  hstle  29644  2sqmod  30193  sqrtpwpw2p  42280
  Copyright terms: Public domain W3C validator