![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sltneg | Structured version Visualization version GIF version |
Description: Negative of both sides of surreal less-than. (Contributed by Scott Fenton, 3-Feb-2025.) |
Ref | Expression |
---|---|
sltneg | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ ( -us ‘𝐵) <s ( -us ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltnegim 27502 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 → ( -us ‘𝐵) <s ( -us ‘𝐴))) | |
2 | negscl 27500 | . . . 4 ⊢ (𝐵 ∈ No → ( -us ‘𝐵) ∈ No ) | |
3 | negscl 27500 | . . . 4 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) | |
4 | sltnegim 27502 | . . . 4 ⊢ ((( -us ‘𝐵) ∈ No ∧ ( -us ‘𝐴) ∈ No ) → (( -us ‘𝐵) <s ( -us ‘𝐴) → ( -us ‘( -us ‘𝐴)) <s ( -us ‘( -us ‘𝐵)))) | |
5 | 2, 3, 4 | syl2anr 598 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (( -us ‘𝐵) <s ( -us ‘𝐴) → ( -us ‘( -us ‘𝐴)) <s ( -us ‘( -us ‘𝐵)))) |
6 | negnegs 27508 | . . . 4 ⊢ (𝐴 ∈ No → ( -us ‘( -us ‘𝐴)) = 𝐴) | |
7 | negnegs 27508 | . . . 4 ⊢ (𝐵 ∈ No → ( -us ‘( -us ‘𝐵)) = 𝐵) | |
8 | 6, 7 | breqan12d 5164 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (( -us ‘( -us ‘𝐴)) <s ( -us ‘( -us ‘𝐵)) ↔ 𝐴 <s 𝐵)) |
9 | 5, 8 | sylibd 238 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (( -us ‘𝐵) <s ( -us ‘𝐴) → 𝐴 <s 𝐵)) |
10 | 1, 9 | impbid 211 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ ( -us ‘𝐵) <s ( -us ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 class class class wbr 5148 ‘cfv 6541 No csur 27133 <s cslt 27134 -us cnegs 27484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-1st 7972 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-1o 8463 df-2o 8464 df-nadd 8662 df-no 27136 df-slt 27137 df-bday 27138 df-sle 27238 df-sslt 27273 df-scut 27275 df-0s 27315 df-made 27332 df-old 27333 df-left 27335 df-right 27336 df-norec 27412 df-norec2 27423 df-adds 27434 df-negs 27486 |
This theorem is referenced by: sleneg 27510 sltnegd 27511 slt0neg2d 27515 sltsub2 27534 mulscan2d 27621 recsex 27655 |
Copyright terms: Public domain | W3C validator |