| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lemul1a | Structured version Visualization version GIF version | ||
| Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by NM, 21-Feb-2005.) |
| Ref | Expression |
|---|---|
| lemul1a | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11123 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 2 | leloe 11208 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ 𝐶 ↔ (0 < 𝐶 ∨ 0 = 𝐶))) | |
| 3 | 1, 2 | mpan 690 | . . . . . 6 ⊢ (𝐶 ∈ ℝ → (0 ≤ 𝐶 ↔ (0 < 𝐶 ∨ 0 = 𝐶))) |
| 4 | 3 | pm5.32i 574 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ↔ (𝐶 ∈ ℝ ∧ (0 < 𝐶 ∨ 0 = 𝐶))) |
| 5 | lemul1 11982 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) | |
| 6 | 5 | biimpd 229 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) |
| 7 | 6 | 3expia 1121 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 8 | 7 | com12 32 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 9 | 1 | leidi 11660 | . . . . . . . . . 10 ⊢ 0 ≤ 0 |
| 10 | recn 11105 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 11 | 10 | mul01d 11321 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ → (𝐴 · 0) = 0) |
| 12 | recn 11105 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 13 | 12 | mul01d 11321 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ → (𝐵 · 0) = 0) |
| 14 | 11, 13 | breqan12d 5111 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 0) ≤ (𝐵 · 0) ↔ 0 ≤ 0)) |
| 15 | 9, 14 | mpbiri 258 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 0) ≤ (𝐵 · 0)) |
| 16 | oveq2 7362 | . . . . . . . . . 10 ⊢ (0 = 𝐶 → (𝐴 · 0) = (𝐴 · 𝐶)) | |
| 17 | oveq2 7362 | . . . . . . . . . 10 ⊢ (0 = 𝐶 → (𝐵 · 0) = (𝐵 · 𝐶)) | |
| 18 | 16, 17 | breq12d 5108 | . . . . . . . . 9 ⊢ (0 = 𝐶 → ((𝐴 · 0) ≤ (𝐵 · 0) ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) |
| 19 | 15, 18 | imbitrid 244 | . . . . . . . 8 ⊢ (0 = 𝐶 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) |
| 20 | 19 | a1dd 50 | . . . . . . 7 ⊢ (0 = 𝐶 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 0 = 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 22 | 8, 21 | jaodan 959 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ (0 < 𝐶 ∨ 0 = 𝐶)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 23 | 4, 22 | sylbi 217 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 24 | 23 | com12 32 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 25 | 24 | 3impia 1117 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) |
| 26 | 25 | imp 406 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7354 ℝcr 11014 0cc0 11015 · cmul 11020 < clt 11155 ≤ cle 11156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 |
| This theorem is referenced by: lemul2a 11985 ltmul12a 11986 lemul12b 11987 lt2msq1 12015 lemul1ad 12070 faclbnd4lem1 14204 facavg 14212 mulcn2 15507 o1fsum 15724 eftlub 16022 bddmulibl 25770 cxpaddlelem 26691 dchrmusum2 27435 axcontlem7 28952 nmoub3i 30757 siilem1 30835 ubthlem3 30856 bcs2 31166 cnlnadjlem2 32052 leopnmid 32122 eulerpartlemgc 34398 rrntotbnd 37899 jm2.17a 43080 |
| Copyright terms: Public domain | W3C validator |