| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lemul1a | Structured version Visualization version GIF version | ||
| Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by NM, 21-Feb-2005.) |
| Ref | Expression |
|---|---|
| lemul1a | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11114 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 2 | leloe 11199 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ 𝐶 ↔ (0 < 𝐶 ∨ 0 = 𝐶))) | |
| 3 | 1, 2 | mpan 690 | . . . . . 6 ⊢ (𝐶 ∈ ℝ → (0 ≤ 𝐶 ↔ (0 < 𝐶 ∨ 0 = 𝐶))) |
| 4 | 3 | pm5.32i 574 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ↔ (𝐶 ∈ ℝ ∧ (0 < 𝐶 ∨ 0 = 𝐶))) |
| 5 | lemul1 11973 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) | |
| 6 | 5 | biimpd 229 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) |
| 7 | 6 | 3expia 1121 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 8 | 7 | com12 32 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 9 | 1 | leidi 11651 | . . . . . . . . . 10 ⊢ 0 ≤ 0 |
| 10 | recn 11096 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 11 | 10 | mul01d 11312 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ → (𝐴 · 0) = 0) |
| 12 | recn 11096 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 13 | 12 | mul01d 11312 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ → (𝐵 · 0) = 0) |
| 14 | 11, 13 | breqan12d 5107 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 0) ≤ (𝐵 · 0) ↔ 0 ≤ 0)) |
| 15 | 9, 14 | mpbiri 258 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 0) ≤ (𝐵 · 0)) |
| 16 | oveq2 7354 | . . . . . . . . . 10 ⊢ (0 = 𝐶 → (𝐴 · 0) = (𝐴 · 𝐶)) | |
| 17 | oveq2 7354 | . . . . . . . . . 10 ⊢ (0 = 𝐶 → (𝐵 · 0) = (𝐵 · 𝐶)) | |
| 18 | 16, 17 | breq12d 5104 | . . . . . . . . 9 ⊢ (0 = 𝐶 → ((𝐴 · 0) ≤ (𝐵 · 0) ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) |
| 19 | 15, 18 | imbitrid 244 | . . . . . . . 8 ⊢ (0 = 𝐶 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) |
| 20 | 19 | a1dd 50 | . . . . . . 7 ⊢ (0 = 𝐶 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 0 = 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 22 | 8, 21 | jaodan 959 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ (0 < 𝐶 ∨ 0 = 𝐶)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 23 | 4, 22 | sylbi 217 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 24 | 23 | com12 32 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 25 | 24 | 3impia 1117 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) |
| 26 | 25 | imp 406 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 ℝcr 11005 0cc0 11006 · cmul 11011 < clt 11146 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 |
| This theorem is referenced by: lemul2a 11976 ltmul12a 11977 lemul12b 11978 lt2msq1 12006 lemul1ad 12061 faclbnd4lem1 14200 facavg 14208 mulcn2 15503 o1fsum 15720 eftlub 16018 bddmulibl 25768 cxpaddlelem 26689 dchrmusum2 27433 axcontlem7 28949 nmoub3i 30751 siilem1 30829 ubthlem3 30850 bcs2 31160 cnlnadjlem2 32046 leopnmid 32116 eulerpartlemgc 34373 rrntotbnd 37882 jm2.17a 42999 |
| Copyright terms: Public domain | W3C validator |