| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lemul1a | Structured version Visualization version GIF version | ||
| Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by NM, 21-Feb-2005.) |
| Ref | Expression |
|---|---|
| lemul1a | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11242 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 2 | leloe 11326 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ 𝐶 ↔ (0 < 𝐶 ∨ 0 = 𝐶))) | |
| 3 | 1, 2 | mpan 690 | . . . . . 6 ⊢ (𝐶 ∈ ℝ → (0 ≤ 𝐶 ↔ (0 < 𝐶 ∨ 0 = 𝐶))) |
| 4 | 3 | pm5.32i 574 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ↔ (𝐶 ∈ ℝ ∧ (0 < 𝐶 ∨ 0 = 𝐶))) |
| 5 | lemul1 12098 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) | |
| 6 | 5 | biimpd 229 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) |
| 7 | 6 | 3expia 1121 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 8 | 7 | com12 32 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 9 | 1 | leidi 11776 | . . . . . . . . . 10 ⊢ 0 ≤ 0 |
| 10 | recn 11224 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 11 | 10 | mul01d 11439 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ → (𝐴 · 0) = 0) |
| 12 | recn 11224 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 13 | 12 | mul01d 11439 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ → (𝐵 · 0) = 0) |
| 14 | 11, 13 | breqan12d 5140 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 0) ≤ (𝐵 · 0) ↔ 0 ≤ 0)) |
| 15 | 9, 14 | mpbiri 258 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 0) ≤ (𝐵 · 0)) |
| 16 | oveq2 7418 | . . . . . . . . . 10 ⊢ (0 = 𝐶 → (𝐴 · 0) = (𝐴 · 𝐶)) | |
| 17 | oveq2 7418 | . . . . . . . . . 10 ⊢ (0 = 𝐶 → (𝐵 · 0) = (𝐵 · 𝐶)) | |
| 18 | 16, 17 | breq12d 5137 | . . . . . . . . 9 ⊢ (0 = 𝐶 → ((𝐴 · 0) ≤ (𝐵 · 0) ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) |
| 19 | 15, 18 | imbitrid 244 | . . . . . . . 8 ⊢ (0 = 𝐶 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) |
| 20 | 19 | a1dd 50 | . . . . . . 7 ⊢ (0 = 𝐶 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 0 = 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 22 | 8, 21 | jaodan 959 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ (0 < 𝐶 ∨ 0 = 𝐶)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 23 | 4, 22 | sylbi 217 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 24 | 23 | com12 32 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))) |
| 25 | 24 | 3impia 1117 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴 ≤ 𝐵 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) |
| 26 | 25 | imp 406 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 ℝcr 11133 0cc0 11134 · cmul 11139 < clt 11274 ≤ cle 11275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 |
| This theorem is referenced by: lemul2a 12101 ltmul12a 12102 lemul12b 12103 lt2msq1 12131 lemul1ad 12186 faclbnd4lem1 14316 facavg 14324 mulcn2 15617 o1fsum 15834 eftlub 16132 bddmulibl 25797 cxpaddlelem 26718 dchrmusum2 27462 axcontlem7 28954 nmoub3i 30759 siilem1 30837 ubthlem3 30858 bcs2 31168 cnlnadjlem2 32054 leopnmid 32124 eulerpartlemgc 34399 rrntotbnd 37865 jm2.17a 42951 |
| Copyright terms: Public domain | W3C validator |